пользователей: 28278
предметов: 12134
вопросов: 228408
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

13. Теорема Пуассона. Оценка скорости сходимости в формуле Пуассона.

1) П. т.- предельная теорема теории вероятностей, являющаяся частным случаем больших чисел закона. П. т. обобщает Бернулли теоремуна случай независимых испытаний, вероятность появления в к-рых нек-рого события зависит от номера испытаний (т. н. схема Пуассона). Формулировка П. т. такова: если в последовательности независимых испытаний событие Анаступает с вероятностями pkзависящими от номера испытания k, k=1,2, . . ., mn/n - частота Ав первых писпытаниях, то при любом e>0 вероятность неравенства 

041760-79.jpg

будет стремиться к 1 при 041760-80.jpg. Теорема Бернулли следует из П. т. при p1=. . .=р п. П. т. была установлена С. Пуассоном [1]. Доказательство П. т. было получено С. Пуассоном из варианта Лапласа теоремы. Простое доказательство П. т. было дано П. Л. Чебышевым (1846), к-рому также принадлежит первая общая форма закона больших чисел, включающая П. т. в качестве частного случая.

2) П. т.- предельная теорема теории вероятностей о сходимости биномиального распределения к Пуассона распределению:если Р п(m) -вероятность того, что в писпытаниях Бернулли нек-рое событие Анаступает ровно траз, причем и вероятность Ав каждом испытании равна р,то при больших значениях n и 1/р вероятность Р п (т).близка к 

041760-81.jpg
Величина l=np равна среднему значению числа наступлений А в п испытаниях, а последовательность значений 041760-82.jpg, образует распределение Пуассона. П. т. была установлена С. Пуассоном [1] для схемы испытаний, более общей, чем схема Бернулли, когда вероятности наступления события Амогут меняться от испытания к испытанию так, что 041760-83.jpg при 041760-84.jpg. Строгое доказательство П. т. в этом случае основано на рассмотрении схемы серий случайных величин такой, что в n-й серии случайные величины независимы и принимают значения 1 и 0 с вероятностями и р n1- р п соответственно. Более удобна форма П. т. в виде неравенства: если 041760-85.jpg041760-86.jpg, то при 041760-87.jpg

041760-88.jpg

Это неравенство указывает ошибку при замене Р n (т).величиной 041760-89.jpg. Если p1= . . . = р п=l/п, то d =l2/n. П. т. и теорема Лапласа дают исчерпывающее представление об асимптотич. поведении биномиального распределения.

Последующие обобщения П. т. создавались в двух основных направлениях. С одной стороны, появились уточнения П. т., основанные на асимптотич. разложениях, с другой - были установлены общие условия сходимости сумм независимых случайных величин к распределению Пуассона.


13.01.2014; 03:48
хиты: 36
рейтинг:0
Точные науки
математика
теория вероятности
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2018. All Rights Reserved. помощь