пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

ПРЕДЕЛ ОГНЕСТОЙКОСТИ

2.2. За предел огнестойкости строительных конструкций принимается время (в часах или минутах) от начала их огневого стандартного испытания до возникновения одного из предельных состояний по огнестойкости.

2.3. Стандарт СЭВ 1000-78 различает следующие четыре вида предельных состояний по огнестойкости: по потере несущей способности конструкций и узлов (обрушение или прогиб в зависимости от типа конструкций); по теплоизолирующей способности – повышение температуры на необогреваемой поверхности в среднем более чем на 160°С или в любой точке этой поверхности более чем на 190°С в сравнении с температурой конструкции до испытания, или более 220°С независимо от температуры конструкции до испытания; по плотности – образование в конструкциях сквозных трещин или сквозных отверстий, через которые проникают продукты горения или пламя; для конструкций, защищенных огнезащитными покрытиями и испытываемых без нагрузок, предельным состоянием будет достижение критической температуры материала конструкции.
Для наружных стен, покрытий, балок, ферм, колонн н столбов предельным состоянием является только потеря несущей способности конструкций и узлов.

2.4. Предельные состояния конструкций по огнестойкости, указанные в п. 2.3, в дальнейшем для краткости будем называть соответственно I, II, III и IV предельными состояниями конструкции по огнестойкости.
В случаях определения предела огнестойкости при нагрузках, определяемых на основании подробного анализа условий, возникающих во время пожара и отличающихся от нормативных, предельное состояние конструкции будем обозначать 1А.

2.5. Пределы огнестойкости конструкций могут быть определены и расчетным путем. В этих случаях испытания допускается не проводить.
Определение пределов огнестойкости расчетным путем следует выполнять по методикам, одобренным Главтехнормированием Госстроя СССР.

2.6. Для ориентировочной оценки предела огнестойкости конструкций при их разработке и проектировании можно руководствоваться следующими положениями:
а) предел огнестойкости слоистых ограждающих конструкций по теплоизолирующей способности равен, а, как правило, выше суммы пределов огнестойкости отдельно взятых слоев. Отсюда следует, что увеличение числа слоев ограждающей конструкции (оштукатуривание, облицовка) не уменьшает ее предела огнестойкости по теплоизолирующей способности. В отдельных случаях введение дополнительного слоя может не дать эффекта, например, при облицовке листовым металлом с необогреваемой стороны;
б) пределы огнестойкости ограждающих конструкций с воздушной прослойкой в среднем на 10% выше пределов огнестойкости тех же конструкций, но без воздушной прослойки; эффективность воздушной прослойки тем выше, чем больше она удалена от нагреваемой плоскости; при замкнутых воздушных прослойках их толщина не влияет на предел огнестойкости;
в) пределы огнестойкости ограждающих конструкций с несимметричным расположением слоев зависят от направленности теплового потока. С той стороны, где вероятность возникновения пожара выше, рекомендуется располагать несгораемые материалы с низкой теплопроводностью;
г) увеличение влажности конструкций способствует уменьшению скорости прогрева и повышению огнестойкости за исключением тех случаев, когда увеличение влажности увеличивает вероятность внезапного хрупкого разрушения материала или появления местных выколов, особенно опасно это явление для бетонных и асбестоцементных конструкций;
д) предел огнестойкости нагруженных конструкций уменьшается с увеличением нагрузки. Наиболее напряженное сечение конструкций, подверженное воздействию огня и высоких температур, как правило, определяет величину предела огнестойкости;
е) предел огнестойкости конструкции тем выше, чем меньше отношение обогреваемого периметра сечения ее элементов к их площади;
ж) предел огнестойкости статически неопределимых конструкций, как правило, выше предела огнестойкости аналогичных статически определимых конструкций за счет перераспределения усилий на менее напряженные и нагреваемые с меньшей скоростью элементы; при этом необходимо учитывать влияние дополнительных усилий, возникающих вследствие температурных деформаций;
з) возгораемость материалов, из которых выполнена конструкция, не определяет ее предела огнестойкости. Например, конструкции из тонкостенных металлических профилей имеют минимальный предел огнестойкости, а конструкции из древесины имеют более высокий предел огнестойкости, чем конструкции из стали при тех же отношениях обогреваемого периметра сечения к его площади и величины действующих напряжений к временному сопротивлению или пределу текучести. В то же время следует учитывать, что применение сгораемых материалов вместо трудносгораемых или несгораемых может понизить предел огнестойкости конструкции, если скорость его выгорания будет выше скорости прогревания.
Для оценки предела огнестойкости конструкций на основании вышеперечисленных положений необходимо располагать достаточными сведениями о пределах огнестойкости конструкций, аналогичных рассматриваемым по форме, использованным материалам и конструктивному исполнению, а также сведениями об основных закономерностях их поведения при пожаре или огневых испытаниях.

2.7. В случаях, когда в табл. 2—15 пределы огнестойкости указаны для однотипных конструкций различных размеров, предел огнестойкости конструкции, имеющей промежуточный размер, может определяться по линейной интерполяции. Для железобетонных конструкций при этом должна осуществляться интерполяция и по величине расстояния до оси арматуры.

2.12. Основными параметрами, которые оказывают влияние на предел огнестойкости бетонных и железобетонных конструкций являются: вид бетона, вяжущего и заполнителя; класс арматуры; тип конструкции; форма поперечного сечения; размеры элементов; условия их нагрева; величина нагрузки и влажность бетона.

2.13. Увеличение температуры в бетоне сечения элемента во время пожара зависит от вида бетона, вяжущего и заполнителей, от отношения поверхности, на которую действует пламя, к площади поперечного сечения. Тяжелые бетоны с силикатным заполнителем прогреваются быстрее, чем с карбонатными заполнителями. Облегченные и легкие бетоны тем медленнее прогреваются, чем меньше их плотность. Полимерная связка, как н карбонатный заполнитель, уменьшает скорость прогрева бетона вследствие происходящих в них реакций разложения, на которые расходуется тепло.
Массивные элементы конструкции лучше сопротивляются воздействию огня; предел огнестойкости колонн, нагреваемых с четырех сторон, меньше предела огнестойкости колонн при одностороннем нагреве; предел огнестойкости балок при воздействии на них огня с трех сторон меньше предела огнестойкости балок, нагреваемых с одной стороны.

2.14. Минимальные размеры элементов и расстояния от оси арматуры до поверхностей элемента принимаются по таблицам настоящего раздела, но не менее требуемых главой СНиП II-21-75 «Бетонные и железобетонные конструкция».

2.15. Расстояние до оси арматуры и минимальные размеры элементов для обеспечения требуемого предела огнестойкости конструкций зависят от вида бетона. Легкие бетоны имеют теплопроводность на 10—20 %, а бетоны с крупным карбонатным заполнителем на 5—10% меньше, чем тяжелые бетоны с силикатным заполнителем. В связи с этим расстояние до оси арматуры для конструкции из легкого бетона или из тяжелого бетона с карбонатным заполнителем может быть принято меньше, чем для конструкций из тяжелого бетона выполненных из этих бетонов конструкций.
Величины пределов огнестойкости, приведенные в табл. 2 - 6, 8, относятся к бетону с крупным заполнителем из силикатных пород, а также к плотному силикатному бетону. При применении заполнителя из карбонатных пород минимальные размеры как поперечного сечения, так и расстояние от осей арматуры до поверхности изгибаемого элемента могут быть уменьшены на 10%. Для легких бетонов уменьшение может быть на 20% при плотности бетона 1,2 т/м3 н на 30% для изгибаемых элементов (см. табл. 3, 5, 6, 8) при плотности бетона 0,8 т/м3 и керамзитоперлнтобетона с плотностью 1,2 т/м3.


12.06.2017; 14:47
хиты: 70
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь