пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Билет №16

1. Физико-химические основы ферментативного катализа. Факторы, определяющие каталитическую эффективность ферментов

ФЕРМЕНТАТИВНЫЙ КАТАЛИЗ (биокатализ), ускорение биохим. р-ций при участии белковых макромолекул, называемых ферментами (энзимами). В простейшем случае ур-ние р-ции с участием фермента имеет вид:

5016-1.jpg где E - фермент, S - субстрат, ES - фермент-субстратный комплекс (т. наз. комплекс Михаэлиса), P- продукт р-ции. Превращение субстрата в продукт происходит в комплексе Михаэлиса. Часто субстрат образует ковалентные связи с функц. группами активного центра, в т. ч. и с группами кофермента (см. Коферменты). Большое значение в механизмах ферментативных р-ций имеет основной и кислотный катализ, реализуемый благодаря наличию имидазольных групп остатков гистидина и карбоксильных групп дикарбоно-вых аминокислот. Важнейшие особенности ферментативного катализа - эффективность, специфичность и чувствительность к регуляторным воздействиям. Ферменты увеличивают скорость хим. превращения субстрата по сравнению с неферментативной р-цией в 109-1012 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен (см. Комплементарность)переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается активац. барьер р-ции. Большинство ферментов обладает высокой субстратной специфичностью, т. е. способностью катализировать превращение только одного или неск. близких по структуре в-в. Специфичность определяется топографией связывающего субстрат участка активного центра. Активность ферментов регулируется в процессе их биосинтеза (в т.ч. благодаря образованию изоферментов, к-рые катализируют идентичные р-ции, но отличаются строением и каталитич. св-вами), а также условиями среды (рН, т-ра, ионная сила р-ра) и многочисленными ингибиторами и активаторами, присутствующими в организме. Ингибиторами и активаторами могут служить сами субстраты (в определенных концентрациях), продукты р-ции, а также конечные продукты в цепи последоват. превращений в-в

 

2. Жирорастворимые витамины

Витамины — жизненно важные органический соединения, необходимые для человека и животных в ничтожных количествах, но имеющие огромное значение для нормального роста, развития и самой жизни. Витамины обычно поступают с растительной пищей или с продуктами животного происхождения, поскольку они не синтезируются в организме человека и животных.

По растворимости витамины подразделяются на жирорастворимые и водорастворимые. В химическом отношении жирорастворимые витамины А, D, E и К относятся к изопреноидам . Витамин А (ретинол) . Ретиноиды содержатся в животных продуктах, а β-каротин — в свежих фруктах и овощах (в особенности в моркови). Ретиноевая кислота выполняет функции ростового фактора. При недостатке витамина А развиваются ночная ("куриная") слепота, ксерофтальмия (сухость роговой оболочки глаз), наблюдается нарушение роста.

Витамин D (кальциферол) при гидроксилировании в печени и почках образует гормон кальцитриол(1α,25-дигидроксихолекальциферол) Вместе с двумя другими гормонами (паратгормоном, или паратирином, и кальцитонином) кальцитриол принимает участие в регуляции метаболизма кальция. Кальциферол образуется из предшественника 7-дегидрохолестерина, присутствующего в коже человека и животных, при облучении ультрафиолетовым светом. Если УФ-облучение кожи недостаточно или витамин D отсутствует в пищевых продуктах, развивается витаминная недостаточность и, как следствие, рахит у детей, остеомаляция (размягчение костей) у взрослых. В обоих случаях нарушается процесс минерализации (включения кальция) костной ткани

Витамин Ε содержатся только в растениях, особенно его много в проростках пшеницы. Для ненасыщенных липидов эти вещества являются эффективными антиоксидантами

Витамин К —. Недостаток витамина К наблюдается довольно редко, так как эти вещества вырабатываются микрофлорой кишечника. Витамин К принимает участие в карбоксилировании остатков глутаминовой кислоты белков плазмы крови, что важно для нормализации или ускорения процесса свертывания крови. Процесс ингибируется антагонистами витамина К (например, производными кумарина), что находит применение как один из методов лечения тромбозов.

 

3. Инициация трансляции. Последовательность событий, участники, источники энергии

Трансля́ция (от лат. translatio — перенос, перемещение) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК, мРНК), осуществляемый рибосомой. Инициация трансляции - это серия молекулярных событий, происходящих с рибосомой, которая приводит к взаимодействию рибосомы с началом кодирующей нуклеотидной последовательности мРНК и последующему считыванию (трансляции) этой последовательности. Таким образом, за стадией инициации следует стадия собственно трансляции, или элонгации полипептидной цепи, которая заканчивается стадией терминации. Эпицикл трансляции, состоящий из этих трех стадий - инициации, элонгации и терминации, - схематически показан на рис. 1 предыдущей статьи (см. [1]).

Для осуществления инициации Природа изобрела специальные механизмы. Дело в том, что способность рибосомы к трансляции матричного полинуклеотида (мРНК) и направляемому ей синтезу полипептидной цепи белка (см. [1]) еще далеко не обеспечивает пути вхождения в эти процессы. Прежде всего, как следует из рассмотрения элементарного элогационного цикла рибосомы (см. рис. 2 в статье [1]), синтез полипептида требует присутствия предобразованной пептидил-тРНК в качестве одного из субстратов реакции транспептидации. Другими словами, донорный субстрат должен присутствовать в рибосомном Р-участке, чтобы далее удлиняться за счет присоединения следующего аминоацильного остатка. Но когда рибосома начинает трансляцию, никакого пептида и соответствующего донорного субстрата в виде пептидил-тРНК в рибосоме еще нет. Для того чтобы решить эту проблему и запускаются специальные механизмы инициации: специальная инициаторная аминоацил-тРНК во взаимодействии со специальными белками (факторами инициации) связывается со специальным инициирующим участком мРНК на рибосоме. При этом связывающаяся инициаторная аминоацил-тРНК поступает именно в Р-участок рибосомы, что позволяет ей служит в качестве донорного субстрата в образовании первой пептидной связи. Таким образом, инициаторная аминоацил-тРНК в Р-участке рибосомы имитирует пептидил-тРНК, что и позволяет решить трудность начала элонгации пептида. У прокариотических организмов (бактерий) инициаторная аминоацил-тРНК похожа на пептидил-тРНК также и химически: ее аминогруппа формилирована, то есть связана с формильной группой амидной связью. Итак, введение донорного субстрата в Р-участок рибосомы и есть одна из основных функций механизма инициации трансляции.


10.04.2017; 23:50
хиты: 79
рейтинг:0
Естественные науки
науки о жизни
биохимия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь