пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Билет №14

1. Классификация и номенклатура ферментов

В начале ХХ в. предложили называть ферменты по названию субстрата с добавлением суффикса -аза (amylum — амилаза, lipos — липаза, protein — протеиназа). В 1961 г. Ме- ждународный Совет Биохимиков (IUB) предложил положить в основу названия и классификации ферментов тип химической реакции и ее механизм. Все ферменты разделили на 6 классов, каждый из которых состоит из 4–13 подклассов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы (синтетазы).

1.Оксидоредуктазы — это ферменты, катализирующие окислительно-восстано- вительные реакции с участием двух субстратов А и В: А red. + Вox à Аox + Вred

2.Трансферазы — это ферменты, катализирующие реакции межмолекулярного переноса группы Х (отличной от атома водорода) с субстрата А на субстрат В: А-Х + В А + В-Х.

3.Гидролазы это ферменты, которые катализируют расщепление внутримолекулярных связей с участием воды. Например, Ацетилхолин + Н2О Холин + Уксусная кислота.

4.Лиазы — это ферменты, отщепляющие группы от субстратов по негидролитическому механизму с образованием двойных связей и присоединением веществ по месту двойной связи.

5.Изомеразы катализируют превращения различных типов оптических, геометрических и позиционных изомеров.

6.Лигазы катализируют соединение двух молекул, сопряженное с разрывом пирофосфатной связи АТФ или другого макроэргического соединения. Каждый фермент по классификации ферментов (КФ, ЕС) обозначается четырьмя цифрами (шифр фермента): 1— класс, 2 — подкласс. 3 — подподкласс, 4 — номер фермента в списке подподкласса. Так, например, КФ 2.7.1.1 означает: класс 2 (трансферазы), подкласс 7 (перенос фосфата), подподкласс 1 (алкогольная группа — акцептор фосфата). Конечное на- звание — гексокиназа, или АТФ:D-гексоза-6-фосфотрансфераза, фермент, катализирующий перенос фосфата с АТФ на гидроксильную группу у шестого углеродного атома глюкозы.

 

2. Структурные липиды (фосфоглицериды, сфинголипиды и гликолипиды):  химический состав и биологические функции

Структурные липиды — их кол-во и состав в организме строго постоянны, генетически обусловлены и в норме не зависят от режима питания, функционального состояния организма. Фосфолипи́ды — сложные липиды, сложные эфиры многоатомных спиртов и высших жирных кислот. Содержат остаток фосфорной кислоты и соединённую с ней добавочную группу атомов различной химической природы.

Фосфолипиды — сложные липиды, в которых содержатся жирные кислоты, фосфорная кислота и дополнительная группа атомов, во многих случаях содержащая азот. Они есть во всех живых клетках. Содержатся в нервной ткани, участвуют в доставке жиров, жирных кислот и холестерина.

Фосфолипиды входят в состав всех клеточных мембран. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Наиболее распространённая группа Фосфолипидов — фосфоглицериды, также к фосфолипидам относятся фосфосфинголипиды и фосфоинозитиды.

Фосфолипиды участвуют в транспорте жиров, жирных кислот и холестерина. Между плазмой и эритроцитами происходит обмен фосфолипидами, которые играют важнейшую роль, поддерживая в растворимом состоянии неполярные липиды. Сфинголипиды — это класс липидов, относящихся к производным алифатических аминоспиртов. Они играют важную роль в передаче клеточного сигнала и в клеточном распознавании. Особенно богата сфинголипидами нервная ткань. Основу сфинголипидов составляет сфингозин, связанный амидной связью с ацильной группой (например, с жирной кислотой). При этом несколько возможных радикалов связаны со сфингозином за счёт эфирной связи. Простейший представитель сфинголипидов — церамид. Гликолипиды — (от греч. γλυκός (glykos) — сладкий и λίπος (lípos) — жир) сложные липиды, образующиеся в результате соединения липидов с углеводами. В молекулах гликолипидов есть полярные «головы» (углевод) и неполярные «хвосты» (остатки жирных кислот). Благодаря этому гликолипиды (вместе с фосфолипидами) входят в состав клеточных мембран. Гликолипиды широко представлены в тканях, особенно в нервной ткани, в частности в ткани мозга. Они локализованы преимущественно на наружной поверхности плазматической мембраны, где их углеводные компоненты входят в число других углеводов клеточной поверхности.

 

3. Особенности структуры тРНК как адапторной молекулы

Между аминокислотами и нуклеотидами (или триплетами нуклеотидов) невозможны специфические, комплементарные взаимодействия по типу образования нуклеотидных пар А»»»Т (или A*«»U) и G»»»C. Поэтому

было сделано предположение о существовании молекул-адапторов, каждая из которых может взаимодействовать с определенным кодоном — с одной стороны, и с определенной аминокислотой — с другой стороны.

В 1957 г. такие молекулы обнаружены, ими оказались транспортные РНК (тРНК). Очевидно, что для адаптирования 20 разных аминокислот нужно не менее 20 разных тРНК: для каждой аминокислоты своя.Аминоацил-тРНК-синтетазы. Взаимодействие тРНК с аминокислотами — ферментативный процесс, приводящий к образованию ковалентной связи между аминокислотой и тРНК. Такие соединения называют аминоацил-тРНК (аа-тРНК). Аминокислота присоединяется к З'-концу нуклеотидной цепи тРНК, где имеется последовательность А—С—С—, общая для всех тРНК; при этом образуется сложноэфирная связь за счет карбоксильной группы аминокислоты и З'-гидроксильной группы концевого остатка адениловой кислоты в тРНК (рис. 4.14). Эта связь имеет высокоэнергетический характер, так что образование аа-тРНК можно рассматривать как активацию аминокислоты. Реакции аминокислот с тРНК нуждаются в энергии (используется АТФ) и катализируются аминоа-цил-тРНК-синтетазами:


10.04.2017; 23:47
хиты: 94
рейтинг:0
Естественные науки
науки о жизни
биохимия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь