пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Билет №13

1. Ферменты. Специфические черты биологического катализа. Химическая природа ферментов

Фермент (fermentum — закваска) – молекулы осуществляющие все химические превращения в ходе которых образуются или разрушаются ковалентные связи в клетках

В англоязычной литературе энзимы

Фермент превращает субстрат в один или несколько химически модифицированных продуктов, работая как катализатор

Особенности ферментов как биологических катализаторов

Химическая природа ферментов: белки; рибозимы (РНК-ферменты)

Необычайно высокая эффективность (ускоряют реакцию в 105 – 1017 раз)

Специфичность

Зависимость активности ферментов от температуры и рН

 

2. Триглицериды и воска: химический состав и биологические функции

Жиры (триглицериды). Простые и смешанные триглицериды. Высшие жирные кислоты, входящие в состав триглицеридов (насыщенные – пальмитиновая, стеариновая; ненасыщенные – олеиновая, линолевая, линоленовая ). Физические и химические свойства триглицеридов.

Обмен жиров. Гидролиз их при участии липазы и алиэстеразы. Обмен глицерина. Механизмы α- и β- окисления высших жирных кислот, их локализация в клетке и соотношение в животном и растительном царстве. Обмен ацетил-КоА. Глиоксилевый цикл. Механизм биосинтеза высших жирных кислот; малонил-КоА как акцептор ацильных остатков. Локализация биосинтеза высших жирных кислот в клетке. Механизм биосинтеза триглицеридов, роль ацилтрансфераз (моно- и диглицеридтрансацилаз) в этом процессе. Фосфатидные кислоты – промежуточные продукты в биосинтезе триглицеридов.

Воски. Их состав (перечень высших жирных кислот и высших спиртов) и строение. Биологическая роль восков. Представители: спермацет, пчелиный, карнаубский, монтанный воск. Распространение, локализация в организме и функция восков.

 

3. Генетический код. Биохимические подходы к расшифровке генетического кода. Особенности генетического кода

Генети́ческий код — свойственный всем живым организмам способ кодирования последовательности аминокислотных остатков в составе белков при помощи последовательности нуклеотидов в составе нуклеиновой кислоты. В ДНК используется четыре азотистых основания — аденин (А), гуанин (G), цитозин (С), тимин (T), которые в русскоязычной литературе обозначаются буквами А, Г, Ц и Т. Эти буквы составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением нуклеотида, содержащего тимин, который заменён похожим нуклеотидом, содержащим урацил, который обозначается буквой U (У в русскоязычной литературе). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности генетических букв. Белки практически всех живых организмов построены из аминокислот всего 20 видов. Эти аминокислоты называют каноническими. Каждый белок представляет собой цепочку или несколько цепочек аминокислот, соединённых в строго определённой последовательности. Эта последовательность определяет строение белка, а следовательно все его биологические свойства.

Началось всё после того, как было установлено, что основным хранилищем и переносчиком генетической информации является длинная линейная молекула ДНК. Встал вопрос о том, как информация, содержащаяся в гене (фрагменте ДНК) в виде последовательности нуклеотидов (элементарных единиц ДНК), переводится в аминокислотную последовательность соответствующего этому гену белка.

РАСШИФРОВКА КОДА

Когда основные свойства генетического кода были изучены, начались работы по его расшифровке и были определены значения всех триплетов (см. рис.). Триплет, кодирующий определённую аминокислоту, получил название кодона. Как правило, указываются кодоны в мРНК, иногда — в смысловой цепи ДНК (те же кодоны, но с заменой У на Т). Для некоторых аминокислот, например, метионина, существует только один кодон. Другие имеют по два кодона (фенилаланин, тирозин). Есть аминокислоты, которые кодируются тремя, четырьмя и даже шестью

кодонами. Кодоны одной аминокислоты похожи друг на друга и, как правило, отличаются одним последним нуклеотидом. Это делает генетический код более устойчивым, так как замена последнего нуклеотида в кодоне при мутациях не ведёт к замене аминокислоты в белке. Знание генетического кода позволяет нам, зная последовательность нуклеотидов в гене, выводить последовательность аминокислот в белке, что широко используется в современных исследованиях.

Свойства: Триплетность — значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон).

Непрерывность — между триплетами нет знаков препинания, то есть информация считывается непрерывно. Неперекрываемость — один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов (не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки).

Однозначность (специфичность) — определённый кодон соответствует только одной аминокислоте (однако, кодон UGA у Euplotes crassus кодирует две аминокислоты — цистеин и селеноцистеин)[11]

Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов.

Универсальность — генетический код работает одинаково в организмах разного уровня сложности — от вирусов до человека (на этом основаны методы генной инженерии; есть ряд исключений, показанный в таблице раздела «Вариации стандартного генетического кода» ниже). Помехоустойчивость — мутации замен нуклеотидов, не приводящие к смене класса кодируемой аминокислоты, называют консервативными; мутации замен нуклеотидов, приводящие к смене класса кодируемой аминокислоты, называют радикальными.

Знаки препинания — триплеты выполняют функцию знаков препинания.


10.04.2017; 23:44
хиты: 97
рейтинг:0
Естественные науки
науки о жизни
биохимия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь