пользователей: 28692
предметов: 12200
вопросов: 229973
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

теорема о цыркуляции . . .

Теорема о циркуляции магнитного поля — одна из фундаментальных теорем классической электродинамики, сформулированная Андре Мари Ампером в 1826 году. В 1861 году Джеймс Максвелл снова вывел эту теорему, опираясь на аналогии с гидродинамикой, и обобщил ее (см. ниже). Уравнение, представляющее собой содержание теоремы в этом обобщенном виде, входит в число уравнений Максвелла. (Для случая постоянных электрических полей — то есть в принципе в магнитостатике — верна теорема в первоначальном виде, сформулированном Ампером и приведенном в статье первым; для общего случая правая часть должна быть дополнена членом с производной напряженности электрического поля по времени — см. ниже). Теорема гласит[1]:Эта теорема, особенно в иностранной или переводной литературе, называется также теоремой Ампера или законом Ампера о циркуляции (англ. Ampère’s circuital law). Последнее название подразумевает рассмотрение закона Ампера в качестве более фундаментального утверждения, чем закон Био — Савара — Лапласа, который в свою очередь рассматривается уже в качестве следствия (что, в целом, соответствует современному варианту построения электродинамики).Для общего случая (классической) электродинамики формула должна быть дополнена в правой части членом, содержащим производную по времени от электрического поля (см. уравнения Максвелла, а также параграф «Обобщение» ниже). В таком дополненном виде она представляет собой четвёртое уравнение Максвелла в интегральной форме.

6.png

Вихревой характер магнитного поля

Линии магнитной индукции непрерывны: они не имеют ни начала, ни конца. Это имеет место для любого магнитного поля, вызванного какими угодно контурами с током. Векторные поля, обладающие непрерывными линиями, получили название вихревых полей. Мы видим, что магнитное поле есть вихревое поле. В этом заключается существенное отличие магнитного поля от электростатического.

Поле соленоида и тороида. Соленоид представляет собой провод, навитый на круглый цилиндрический каркас. Линии В поля соленоида выглядят примерно так, как показано на рисунке - 3.31. Пусть имеем очень длинный соленоид, длина которого l во много раз больше, чем диаметр его витков, что обеспечивает однородность магнитного поля внутри соленоида. по виткам которого течет ток I. На рисунке - 3.31 представлены линии магнитной индукции внутри и вне соленоида. Приближенно можно считать, что поле бесконечно длинного соленоида сосредоточено целиком внутри него, а полем вне соленоида можно пренебречь.

Для нахождения магнитной индукции ^ В выберем замкнутый прямоугольный контур ABCDA, как показано на рисунке - 3.31. Циркуляция вектора В по замкнутому контуру ABCDA, охватывающему все N витков, согласно теореме равна

∫ Вl dl=μ0NI.

Интеграл по ABCDA можно представить в виде четырех интегралов: по АВ, ВС, CD и DA. На участках АВ и CD контур перпендикулярен линиям магнитной индукции и Вl = 0. На участке вне соленоида В = 0. На участке DA циркуляция вектора В равна В1 (контур совпадает с линией магнитной индукции); следовательно,

∫ Вl dl=μ0NI.

Отсюда приходим к выражению для магнитной индукции поля внутри соленоида в вакууме:

B = μ0Nl/l      

Получили, что поле внутри соленоида однородно (краевыми эффектами в областях, прилегающих к торцам соленоида, при расчетах пренебрегают). Однако отметим, что вывод этой формулы не совсем корректен (линии магнитной индукции замкнуты, и интеграл по внешнему участку магнитного поля строго нулю не равен). Корректно рассчитать поле внутри соленоида можно применяя закон Био - Савара - Лапласа; в результате получается эта же формула.


хиты: 139
рейтинг:0
Естественные науки
физика
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2018. All Rights Reserved. помощь