пользователей: 21265
предметов: 10469
вопросов: 178036
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

7 1. Порядок заполнения атомных орбиталей эл-нами, Принцип минимума энергии. Правило Хурда. Принцип пауля. Максимальная ёмкость энергетич уровней и подуровней в атоме. 2. Азот, строение атома и молекулы, получение, физ и хим св-ва. Роль азота в атмосфере, применение.

Заселение атомных орбиталей электронами определяется правилом минимума энергии, принципом Паули и правилом Хунда.

Электроны заселяют атомные орбитали, начиная с подуровня с меньшей энергией. В этом состоит правило минимума энергии. Последовательность в нарастании энергии подуровней акова: 1s < 2s < 2p < 3s < 3p < 4s ≤ 3d < 4p < 5s и так далее …

Согласно расчетам, электрон движется не по какой-то определенной траектории, а может находиться в любой части околоядерного пространства - т.е. можно говорить лишь о вероятности (возможности) его нахождения на определенном расстоянии от ядра.

Электроны в атоме занимают самые энергетически выгодные атомные орбитали (орбитали с минимальной энергией), образуя электронные облака определенной формы.

В случае s-орбитали электронное облако сферическое:

В случае p-орбиталей форма электронного облака гантелеобразная

Внутри атомных орбиталей вероятность нахождения электронов велика; иными словами, имеется высокая электронная плотность. Пространство вне объема орбиталей соответствует малой электронной плотности.

В каждой атомной орбитали может размещаться максимально два электрона (принцип Паули).

При наличии орбиталей с одинаковой энергией (например, трех р-орбиталей одного подуровня) каждая орбиталь заполняется вначале наполовину (и поэтому на р-подуровне не может быть более трех неспаренных электронов), а затем уже полностью, с образованием электронных пар (правило Хунда).

Для изображения электронной конфигурации атома нужно распределить его электроны по подуровням так, чтобы каждой атомной орбитали соответствовала одна квантовая ячейка, и в соответствии с тремя указанными правилами заселения.

энергетический подуровень-совокупность орбиталей с одинаковыми значениями главного и орбитального квантовых чисел.энергетический подуровень обознач лат. буквами:s,p,d,f и т.д. например, n = 2,1 = 0,1. знач, на 2 уровне есть подуровень s(1 = 0)и подуровень р(1 = 1).

ПЕРВОЕ ПРАВИЛО КЛЕЧКОВСКОГО .

При увеличении заряда ядра атома последовательное заполнение электронных орбиталей происходит от орбиталей с меньшим значением суммы главного и орбитального квантовых чисел (n+l) к орбиталям с большим значением этой суммы.

ВТОРОЕ ПРАВИЛО КЛЕЧКОВСКОГО.

При одинаковых значениях n+l заполнение орбиталей происходит последовательно в направлении возрастания главного квантового числа

Правило Клечковского не для всех атомов описывает правильно электронную конфигурацию. Например 24Cr 1s22s22p63s23p64s23d4 (должно быть), 4s'3d5 (на самом деле).

Это явление называется «провал электронов» и объясняется тем, что более устойчивым атом является тогда, когда число на d-орбитали приближается к 5 или 10. В этом случае и происходит переход e c s – на d. –орбиталь.

К s-элементам относят элементы IA-группы – щелочные металлы. Электронная формула валентной оболочки атомов щелочных металлов ns1. Устойчивая степень окисления равна +1. Элементы IА-группы обладают сходными свойствами из-за сходного строения электронной оболочки

Атомы щелочных элементов легко отдают свой валентный электрон, что характеризуют их как сильные восстановители.

Восстановительные свойства усиливаются с возрастанием порядкового номера.

К p-элементам относятся 30 элементов IIIA-VIIIA-групп периодической системы; p-элементы расположены во втором и третьем малых периодах, а также в четвертом—шестом больших периодах. Элементы IIIА-группы имеют один электрон на p-орбитали. В IVА-VIIIА-группах наблюдается заполнение p-подуровня до 6 электронов. Общая электронная формула p-элементов ns2np6. В периодах при увеличении заряда ядра атомные радиусы и ионные радиусы p-элементов уменьшаются, энергия ионизации и сродство к электрону возрастают, электроотрицательность увеличивается, окислительная активность соединений и неметаллические свойства элементов усиливаются. В группах радиусы атомов увеличиваются. От 2p-элементов к 6p-элементам энергия ионизации уменьшается. Усиливаются металлические свойства p-элемента в группе с увеличением порядкового номера.

К d-элементам относятся 32 элемента периодической системы IV–VII больших периодов. В IIIБ-группе у атомов появляется первый электрон на d-орбитали, в последующих Б-группах d-подуровень заполняется до 10 электронов.

Элементы с промежуточной степенью окисления проявляют амфотерные свойства.

_______


2. Большая часть N2 находится в природе в свободном сост. Свобод-й азот явл главной сост-й частью воздуха, который содержит 78,2% азота. Неорг-е соедин-я азота не встр-ся в природе в больших кол-ах, если не считать натриевую селитру NaNO3, образующую мощные пласты на побережье Тихого океана. Почва содержит незнач-ые кол-ва азота, преимущ-но в виде солей азотной кислоты. Но в виде сложн орг соед-й — белков — азот входит в состав всех жив oрг. Общее содержание азота в земной коре 0,04%.

slide_8.jpg img12.jpgСтепень окис N-3H3 ,N2-2H4 , N-1H2OH, N20, N2+1O, N+2O,HN+3O2, N+4O2,HN+5O3/

Получение азота из воздуха сводится к отделению его от кислорода. В промышэто осущ-ся путем испарения жидкого воздуха в спец установках.

В лаб-ях обычно пользуются азотом, поставляемым в баллонах под повышенным давлением или в сосудах Дьюара. Можно получать азот разлож-ем некоторых его соед, например нитрита аммония NH4NO2, который разлагается при небольшом нагревании:

image5.gif

В молекуле N2 атомы связаны тройной связью. Энергия диссоциации этой молекулы очень велика (945 кДж/моль), поэтому термическая диссоциация азота делается заметной лишь при очень сильном нагревании (при 3000* диссоциирует около 0,1%).

Азот — бесцв газ,без запаха, мало раст-й в воде. немного легче воздуха: масса 1 л азота равна 1,25 г.

Молекулярный азот — химически малоакт в-во. При комнатной t он взаимодействует лишь с литием. Малая актив азота объясняется большой прочностью его молекул, обусловливающей высокую энергию активации реакций, протекающих с участием азота. Однако при нагревании он начинает реагировать со многими металлами — с магниемкальцием, титаном. С H2 азот вступает во взаимодействие при высоких температуре и давлении в присутствии катализатора. Реакция азота с кислородом начинается при 3000-4000*.18255-img_10.jpg

Основное применение азот  в качестве исход продукта для синтеза аммиака и некоторых других соед-й. Кроме того, он примен-ся для заполнения электрических ламп, для создания инертной среды при промышленном проведении некоторых химич реакций, при перекачке горючих жидкостей.

 

При гниении орг в-в знач-ая часть содерж-ся в них азота превращается в аммиак, который под влиянием живущих в почве нитрифицирующих бактерий окис-ся  в азотную кислоту. Последняя, вступая в реакцию с наход-ся в почве карбонатами, например с  CaCO3, образует нитраты;

image2.gif

Некоторая часть азота всегда выделяется при гниении в свободном виде в атмосферу. Свободный азот выделяется при горении орг в-в. Кроме того, существуют бактерии, которые при недост-ом доступе воздуха могут отнимать кислород от нитратов, разрушая их с выделением свободного азота. Деятельность этих денитрифицирующих бактерий приводит к тому, что часть азота из доступной для зеленых растений формы (нитраты) переходит в недоступную (свободный азот). Т. обр., далеко не весь азот, вход-й в состав погибших растений, возвращается  в почву; часть его постепенно выдел-ся в свободном виде.

Непре-ая убыль мин-ых азотных соед-ий давно должна была бы привести к полному прекращению жизни на Земле, если бы в природе не существовали процессы, возмещающие потери азота. К таким процессам относятся прежде всего происходящие в атмосфере электрические разряды, при которых всегда образуется некоторое кол-во оксидов азота; последние с водой дают азотную кислоту, превращающуюся в почве в нитраты. Другим источ попол-я азотных соедин почвы явл жизнедеятельность азотобактерий, способных усваивать атмосферный азот. Усваивая атмосферный азот, клубеньковые бактерии перерабатывают его в азотные соединения, а растения, в свою очередь, превращают последние в белки и другие сложные в-ва.

Т. обр., в природе совершается непрер-ый круговорот азота. 

Геохимический круговорот азота


28.01.2016; 19:30
хиты: 47
рейтинг:0
Естественные науки
химия
неорганическая химия
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь