пользователей: 21209
предметов: 10450
вопросов: 177346
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Преобразование координат вектора. Формула перехода.

 
Пусть в n-мерном линейном пространстве даны базисы:
e1,e2,…,en (1)
e1',e2',…,en' (2)
С матрицей перехода T=(тij); e' = Te
Найдем связь между строками координат произвольного вектора a в этих базисах;
 
Пусть a=∑(j=1…n)αj*ej
          a=∑(i=1…n)αi'ei'
Используя ei' = ∑(j=1…n)тij*ej, для i=1…n получаем
a = ∑(i=1…n)αi' [ ∑(j=1…n)тij*ej ] = ∑(j=1…n) [ ∑(i=1…n)αi'тij ] ej
αj = ∑(i=1…n) αi'тij
Т. е. имеет место матричное равенство
(α1', α2', …, αn') = (α1, α2, …, αn) * T
Строка координат вектора в базисе e' равна строке координат вектора в базисе e умноженной справа на матрицу перехода от e к e'&
отсюда следует 
(α1, α2, …, αn) = (α1', α2', …, αn') * T^-1

хиты: 9
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь