пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

. Анализ и расчет линейных цепей переменного тока с активными, индуктивными и емкостными сопротивлениями

Однофазные электрические цепи переменного тока

Большинство потребителей электрической энергии работает на переменном токе. В настоящее время почти вся электрическая энергия вырабатывается в виде энергии переменного тока. Это объясняется преимуществом производства и распределения этой энергии. Переменный ток получают на электростанциях, преобразуя с помощью генераторов механическую энергию в электрическую. Основное преимущество переменного тока по сравнению с постоянным заключается в возможности с помощью трансформаторов повышать или понижать напряжение, с минимальными потерями передавать электрическую энергию на большие расстояния, в трехфазных источниках питания получать сразу два напряжения: линейное и фазное. Кроме того, генераторы и двигатели переменного тока более просты по устройству, надежней в работе и проще в эксплуатации по сравнению с машинами постоянного тока.

В электрических цепях переменного тока наиболее часто используют синусоидальную форму, характеризующуюся тем, что все токи и напряжения являются синусоидальными функциями времени. В генераторах переменного тока получают ЭДС, изменяющуюся во времени по закону синуса, и тем самым обеспечивают наиболее выгодный эксплуатационный режим работы электрических установок. Кроме того, синусоидальная форма тока и напряжения позволяет производить точный расчет электрических цепей с использованием метода комплексных чисел и приближенный расчет на основе метода векторных диаграмм. При этом для расчета используются законы Ома и Кирхгофа, но записанные в векторной или комплексной форме.

2.1. Способы представления синусоидальных токов, напряжений, ЭДС

В современной технике широко используют разнообразные по форме переменные токи и напряжения: синусоидальные, прямоугольные, треугольные и др. Значение тока, напряжения, ЭДС в любой момент времени t называется мгновенным значением и обозначается малыми строчными буквами, соответственно

i = i(t); u = u(t); e = e(t).

Токи, напряжения и ЭДС, мгновенные значения которых повторяются через равные промежутки времени, называют периодическими, а наименьший промежуток времени, через который эти повторения происходят, называют периодом Т.

Если кривая изменения периодического тока описывается синусоидой, то ток называют синусоидальным. Если кривая отличается от синусоиды, то ток несинусоидальный.

В промышленных масштабах электрическая энергия производится, передается и расходуется потребителями в виде синусоидальных токов, напряжений и ЭДС,

При расчете и анализе электрических цепей применяют несколько способов представления синусоидальных электрических величин.

1. Аналитический способ

Для тока

(2.1)

i(t) = Im sin(ωt + ψi),

для напряжения

(2.2)

u(t) = Um sin (ωt +ψu),

для ЭДС

(2.3)

e(t) = Em sin (ωt +ψe),

В уравнениях (2.1 – 2.3) обозначено:

Im, Um, Em – амплитуды тока, напряжения, ЭДС;
значение в скобках – фаза (полная фаза);
ψi, ψu, ψe – начальная фаза тока, напряжения, ЭДС;
ω – циклическая частота, ω = 2πf;
f – частота, f = 1 / T; Т – период.

Величины i, Im – измеряются в амперах, величины U, Um, e, Em – в вольтах; величина Т (период) измеряется в секундах (с); частота f – в герцах (Гц), циклическая частота ω имеет размерность рад/с. Значения начальных фаз ψi, ψu, ψe могут измеряться в радианах или градусах. Величина ψi, ψu, ψe зависит от начала отсчета времени t = 0. Положительное значение откладывается влево, отрицательное – вправо.

2. Временная диаграмма

Временная диаграмма представляет графическое изображение синусоидальной величины в заданном масштабе в зависимости от времени (рис. 2.1).

i(t) = Im sin(ωt - ψi).

gif-file, 2KB

3. Графоаналитический способ

gif-file, 2KB
Рис. 2.2

Графически синусоидальные величины изображаются в виде вращающегося вектора (рис. 2.2). Предполагается вращение против часовой стрелки с частотой вращения ω. Величина вектора в заданном масштабе представляет амплитудное значение. Проекция на вертикальную ось есть мгновенное значение величины.

Совокупность векторов, изображающих синусоидальные величины (ток, напряжение, ЭДС) одной и той же частоты называют векторной диаграммой.

Векторные величины отмечаются точкой над соответствующими переменными.

Использование векторных диаграмм позволяет существенно упросить анализ цепей переменного тока, сделать его простым и наглядным.

В основе графоаналитического способа анализа цепей переменного тока лежит построение векторных диаграмм.

Пример (рис. 2.3)

gif-file, 2KB
Рис. 2.3

i1(t) = Im1 sin(ωt)
i2(t) = Im2 sin(ωt + ψ2)

i(t) = ?

Первый закон Кирхгофа выполняется для мгновенных значений токов:

i(t) = i1(t) + i2(t) = Im1 sin(ωt) + Im2 sin(ωt - ψ2) = Im sin(ωt + ψ).

Приравниваем проекции на вертикальную и горизонтальные оси (рис. 2.4):

(2.4)

Im sin ψ = Im2 sin ψ2;

(2.5)

Im cos ψ = Im2 cos ψ2 + Im1;

gif-file, 2KB
Рис. 2.4

Из равенств (2.4 – 2.5) получаем

gif-file, 2KB;
gif-file, 2KB.

 

4. Аналитический метод с использованием комплексных чисел

gif-file, 2KB
Рис. 2.5

Синусоидальный ток i(t) = Im sin(ωt + ψ) можно представить комплексным числом Ím на комплексной плоскости (рис. 2.5)

Ím = Imejψ,

где амплитуда тока Im – модуль, а угол ψ, являющийся начальной фазой, – аргумент комплексного тока.

Использование комплексной формы представления позволяет заменить геометрические операции над векторами алгебраическими операциями над комплексными числами. В результате этого к анализу цепей переменного тока могут быть применены все методы анализа цепей постоянного тока. Подробнее этот метод будет рассмотрен ниже.

2.2. Действующее значение переменного тока и напряжения

Для сравнения действий постоянного и переменного токов вводят понятие действующее значение переменного тока.

Действующее значение переменного тока численно равно такому постоянному току, при котором за время равное одному периоду в проводнике с сопротивлением R выделяется такое же количество тепловой энергии, как и при переменном токе.

Определим количество энергии, выделяемой за период в проводнике с сопротивлением R для каждого из токов и приравняем их.

gif-file, 2KBgif-file, 2KB

(2.6)

gif-file, 2KB

Из (2.6) следует:

gif-file, 2KB

Для любой из синусоидальных величин получаем

gif-file, 2KBgif-file, 2KB.

Условились, что все измерительные приборы показывают действующие значения. Например, 220 В – действующее значение, тогда gif-file, 2KB.

2.3. Элементы электрической цепи синусоидального тока

Индуктивность

Вокруг всякого проводника с током образуется магнитное поле, которое характеризуется вектором магнитной индукции В и магнитным потоком Ф:

gif-file, 2KB.

Если поле образуют несколько (w) проводников с одинаковым током, то используют понятие потокосцепления ψ

(2.7)

ψ = w Ф.

Отношение потокосцепления к току, который его создает называют индуктивностью катушки

(2.8)

L = ψ / i.

При изменении во времени потокосцепления согласно закону Фарадея возникает ЭДС самоиндукции

eL = - dψ / dt.

С учетом соотношения (2.8) для eL получаем

(2.9)

eL = - L · di / dt.

Эта ЭДС всегда препятствует изменению тока (закон Ленца). Поэтому, чтобы через проводники все время тек ток, необходимо к проводникам прикладывать компенсирующее напряжение

(2.10)

uL = -eL.

Сопоставляя уравнения (2.9) и (2.10) получаем

(2.11)

uL = L · di / dt

Это соотношение является аналогом закона Ома для индуктивности. Конструктивно индуктивность выполняется в виде катушки с проводом.

Условное обозначение индуктивности

gif-file, 2KB

Катушка с проводом кроме свойства создавать магнитное поле обладает активным сопротивлением R.

Условное обозначение реальной индуктивности.

gif-file, 2KB

Единицей измерения индуктивности является Генри (Гн). Часто используют дробные единицы

1 мкГн = 10–6 Гн; 1 мкГн = 10–3 Гн.

Емкость

Все проводники с электрическим зарядом создают электрическое поле. Характеристикой этого поля является разность потенциалов (напряжение). Электрическую емкость определяют отношением заряда проводника к напряжению

C = Q / UC.

С учетом соотношения

i = dQ / dt

получаем формулу связи тока с напряжением

i = C · duC / dt.

Для удобства ее интегрируют и получают

(2.12)

uC = 1 / C · ∫ i dt.

Это соотношение является аналогом закона Ома для емкости.

Конструктивно емкость выполняется в виде двух проводников разделенных слоем диэлектрика. Форма проводников может быть плоской, трубчатой, шарообразной и др.

Единицей измерения емкости является фарада:

1Ф = 1Кл / 1В = 1Кулон / 1Вольт.

Оказалось, что фарада является большой единицей, например, емкость земного шара равна ≈ 0,7 Ф. Поэтому чаще всего используют дробные значения

1 пФ = 10–12 Ф, (пФ – пикофарада);
1 нФ = 10–9 Ф, (нФ – нанофарада);
1 мкФ = 10–6 Ф, (мкФ – микрофарада).

Условным обозначением емкости является символ

gif-file, 2KB

2.4. Основные свойства простейших цепей переменного тока

Простейшие цепи – цепи, содержащие один элемент.

1. Участок цепи, содержащий активное сопротивление (рис. 2.6).

gif-file, 2KB
Рис. 2.6

Зададимся изменением тока в резисторе по синусоидальному закону

i(t) = ImR sin(ωt + ψi).

Воспользуемся законом Ома для мгновенных значений тока и напряжения

u(t) = R i(t)

и получим

(2.13)

u(t) = R ImR sin(ωt + ψi).

Формальная запись синусоидального напряжения имеет вид

(2.14)

u(t) = UmR sin(ωt + ψu)

Соотношения (2.13) и (2.14) будут равны если будут выполнены условия равенства амплитуд и фаз

(2.15)

UmR = R ImR,

(2.16)

ψu = ψi.

Соотношение (2.15) может быть записано для действующих значений

(2.17)

UR = R IR.

Соотношение (2.16) показывает, что фазы напряжения и тока в резисторе совпадают. Графически это представлено на временной диаграмме (рис. 2.7) и на комплексной плоскости (рис. 2.8).

gif-file, 2KBgif-file, 2KB
Рис. 2.7 и 2.8

2. Участок цепи, содержащий идеальную индуктивность (рис 2.9)

gif-file, 2KB
Рис. 2.9

Зададим изменение тока в индуктивности по синусоидальному закону

i(t) = ImL sin(ωt + ψi).

Используем уравнение связи между током и напряжением в индуктивности

uL = L · di / dt

и получим

uL(t) = ωL · ImL cos(ωt + ψi).

Заменим cos на sin и получим

(2.18)

uL(t) = ωL · ImL sin(ωt + ψi + 90°).

Формальная запись синусоидального напряжения имеет вид

(2.19)

uL(t) = UmL sin(ωt + ψu).

Соотношения (2.18) и (2.19) будут равны если выполняется условие равенства амплитуд и фаз

(2.20)

UmL = ωL · ImL,

(2.21)

ψu = ψi + 90°.

Уравнение (2.20) можно переписать для действующих значений

(2.22)

UL = ωL · IL.

Уравнение (2.21) показывает, что фаза тока в индуктивности отстает от фазы напряжения на 90°. Величину XL = ωL в уравнении (2.20) называют индуктивным сопротивлением. Единицей его измерения является Ом. Графически электрические процессы в индуктивности представлены на рис. 2.10, 2.11.

gif-file, 2KBgif-file, 2KB

Рис. 2.10 и 2.11

3. Участок цепи, содержащий ёмкость (рис. 2.12)

gif-file, 2KB
Рис. 2.12

Зададим изменение тока в емкости по синусоидальному закону

i(t) = ImC sin(ωt + ψi).

Используем уравнением связи между током и напряжением в емкости

uC = 1 / C · ∫ i dt,

и получим

uC = 1 / (ωC) · ImC (-cos(ωt + ψi)).

Заменим –cos на sin

(2.23)

uC = 1 / (ωC) · ImC sin(ωt + ψi - 90°).

Формальная запись синусоидального напряжения имеет вид

(2.24)

uC = UmC sin(ωt + ψu).

Соотношения (2.23) и (2.24) будут равны если выполняется условие равенства амплитуд и фаз

(2.25)

UmC = 1 / (ωC) · ImC,

(2.26)

ψu = ψi - 90°.

Уравнение (2.25) можно переписать для действующих значений

(2.27)

UC = 1 / (ωC) · IC.

Уравнение (2.26) показывает, что фаза напряжения в емкости отстает от фазы тока на 90°. Величину XC = 1 / (ωC) в уравнении (2.25) называют емкостным сопротивлением цепи и измеряют его в Омах. Графически электрические процессы в емкости представлены на рис. 2.13, 2.14.

gif-file, 2KBgif-file, 2KB
Рис. 2.13 и 2.14

2.5. Сопротивления в цепи переменного тока

В цепях переменного тока выделяют следующие виды сопротивлений.

Активное. Активным называют сопротивление резистора. Условное обозначение

gif-file, 2KB

Единицей измерения сопротивления является Ом. Сопротивление резистора не зависит от частоты.

Реактивное. В разделе реактивные выделяют три вида сопротивлений: индуктивное xL и емкостное хс и собственно реактивное. Для индуктивного сопротивления выше была получена формула XL = ωL. Единицей измерения индуктивного сопротивления также является Ом. Величина xL линейно зависит от частоты.

Для емкостного сопротивления выше была получена формула XC = 1 / ωC. Единицей измерения емкостного сопротивления является Ом. Величина хс зависит от частоты по обратно-пропорциональному закону. Просто реактивным сопротивлением цепи называют величину X = XL - XC.

Полное сопротивление. Полным сопротивлением цепи называют величину

(2.28)

gif-file, 2KB.

Из этого соотношения следует, что сопротивления Z, R и X образуют треугольник: Z – гипотенуза, R и X – катеты. Для удобства в этом треугольнике рассматривают угол φ, который определяют уравнением

(2.29)

φ = arctg((XL - XC) / R),

и называют углом сдвига фаз. С учетом него можно дать дополнительные связи

(2.30)

R = Z cos φ,

(2.31)

X = Z sin φ.

2.6. Мощности в цепях переменного тока

По аналогии с мощностью в цепях постоянного тока P = U I, в цепях переменного тока рассматривают мгновенную мощность p = u i. Для упрощения рассмотрим мгновенную мощность в каждом из элементов R, L и С отдельно.

Элемент R (резистор)

Зададим напряжение и ток в виде соотношений

u(t) = Um sin(ωt + ψu),

i(t) = Im sin(ωt + ψi).

Известно, что для резистора ψu = ψi, тогда для р получим

(2.32)

p(t) = u(t) i(t) = Um Im sin2(ωt + ψi).

Из уравнения (2.32) видно, что мгновенная мощность всегда больше нуля и изменяется во времени. В таких случаях принять рассматривать среднюю за период Т мощность

(2.33)

gif-file, 2KB.

Если записать Um и Im через действующие значения U и I: gif-file, 2KBgif-file, 2KB, то получим

(2.34)

P = U I.

По форме уравнение (2.34) совпадает с мощностью на постоянном токе. Величину Р равную произведению действующих значений тока и напряжения называют активной мощностью. Единицей ее измерения является Ватт (Вт).

Элемент L (индуктивность)

Известно, что в индуктивности соотношение фаз ψu = ψi + 90°. Для мгновенной мощности имеет

(2.35)

gif-file, 2KB.

Усредняя уравнение (2.35) по времени за период Т получим

gif-file, 2KB.

Для количественной оценки мощности в индуктивности используют величину QL равную максимальному значению рL

(2.36)

QL = (Um Im) / 2

и называют ее реактивной (индуктивной) мощностью. Единицей ее измерения выбрали ВАр (вольт-ампер реактивный). Уравнение (2.36) можно записать через действующие значения U и I и используя формулу UL = I XL получим

(2.37)

QL = I2 XL.

Элемент С (ёмкость)

Известно, что в емкости соотношение фаз ψu = ψi - 90°. Для мгновенной мощности получаем

pC(t) = u(t) I(t) = (Um Im) / 2 · sin(2ωt).

Среднее значение за период здесь также равно нулю. По аналогии с уравнением (2.36) вводят величину QC = I2 XC, которую называют реактивной (емкостной) мощностью. Единицей ее измерения также является ВАр.

Если в цепи присутствуют элементы R, L и С, то активная и реактивная мощности определяются уравнениями

(2.37)

P = U I cos φ,

(2.38)

Q = QL - QC,

(2.39)

Q = U I sin φ,

где φ – угол сдвига фаз.

Вводят понятие полной мощности цепи

(2.40)

gif-file, 2KB.

С учетом уравнений (2.37) и (2.39), (2.40) можно записать в виде

(2.41)

S = U I.

Единицей измерения полной мощности является ВА – вольт-ампер.

2.7. Цепь с последовательным соединением элементов

Проведем анализ работы электрической цепи с последовательным соединением элементов R, L, С.

gif-file, 2KB

Положим, что в этой задаче заданы величины R, L, С, частота f, напряжение U. Требуется определить ток в цепи и напряжение на элементах цепи. Из свойства последовательного соединения следует, что ток во всех элементах цепи одинаковый. Задача разбивается на ряд этапов.

1. Определение сопротивлений.

Реактивные сопротивления элементов L и С находим по формулам

XL = ωL, XC = 1 / ωC, ω = 2πf.

Полное сопротивление цепи равно

gif-file, 2KB,

угол сдвига фаз равен

(2.42)

φ = arctg((XL - XC) / R),

2. Нахождение тока. Ток в цепи находится по закону Ома

I = U / Z, ψi = ψu + φ.

Фазы тока и напряжения отличаются на угол φ.

3. Расчет напряжений на элементах. Напряжения на элементах определяются по формулам

UR = I R, ψuR = ψi ;

UL = I XL, ψuL = ψi + 90° ;

UC = I XC, ψuC = ψi - 90°.

Для напряжений выполняется второй закон Кирхгофа в векторной форме.

Ú = ÚR + ÚL + ÚC.

4. Анализ расчетных данных. В зависимости от величин L и С в формуле (2.42) возможны следующие варианты: XL > XC; XL < XC; XL = XC.

Для варианта XL > XC угол φ > 0, UL > UC. Ток отстает от напряжения на угол φ. Цепь имеет активно-индуктивный характер. Векторная диаграмма напряжений имеет вид (рис. 2.16).

gif-file, 2KB

Для варианта XL < XC угол φ < 0, UL < UC. Ток опережает напряжение на угол φ. Цепь имеет активно-емкостный характер. Векторная диаграмма напряжений имеет вид (рис. 2.17).

gif-file, 2KB

Для варианта XL = XC угол φ = 0, UL = UC. Ток совпадает с напряжением. Цепь имеет активный характер. Полное сопротивление z=R наименьшее из всех возможных значений XL и XC. Векторная диаграмма напряжений имеет вид (рис. 2.18).

gif-file, 2KB

Этот режим называется резонанс напряжений (UL = UC). Напряжения на элементах UL и UC могут значительно превышать входное напряжение.

Пример.

U = 220 B, f = 50 Гц, R = 22 Ом, L =  350 мГн, С =  28,9 мкФ.

XL = ωL = 2πf L = 2 · 3,14 · 50 · 0,35 = 110 Ом;
XC = 1 / ωC = 1 / (2πf C) = 110 Ом;
Z = R = 22 Ом, φ=0, I = U / R = 220 / 22 = 10 А, ψu = ψi;
UL = UC = I XL = 10 · 110 = 1100 В.

В приведенном примере UL и UС превышают входное напряжение в 5 раз.

2.8. Цепь с параллельным соединением элементов

Проведем анализ работы электрической цепи с параллельным соединением элементов R, L, С. Рассмотрим следующую схему.

gif-file, 2KB

Положим, что заданы величины R1, R2, L, С, частота f и входное напряжение U. Требуется определить токи в ветвях и ток всей цепи.

В данной схеме две ветви. Согласно свойству параллельного соединения, напряжение на всех ветвях параллельной цепи одинаковое, если пренебречь сопротивлением подводящих проводов.

Задача разбивается на ряд этапов

1. Определение сопротивлений ветвей.

Реактивные сопротивления элементов L и С определяем по формулам

XL = ωL, XC = 1 / ωC, ω = 2πf.

Полное сопротивление ветвей равны

gif-file, 2KBgif-file, 2KB,

соответствующие им углы сдвига фаз

φ1 = arctg(XL / R1), φ2 = arctg(XС / R2).

2. Нахождение токов в ветвях.

Токи в ветвях находятся по закону Ома

I1 = U / Z1, ψi1 = ψu + φ1, I2 = U / Z2, ψi2 = ψu + φ2.

3. Нахождение тока всей цепи.

Ток всей цепи может быть найден несколькими методами: графическим, методом мощностей, методом проекций и методом проводимостей.

Чаще всего используют метод проекций и метод проводимостей. В методе проекций ток I1 и I2 раскладываются по две ортогональные составляющие активную и реактивную. Ось активной составляющей совпадает с вектором напряжения U. Ось реактивной составляющей перпендикулярна вектору U (рис. 2.20).

gif-file, 2KB

Активные составляющие токов равны

I1а = I1 cos φ1, I2а = I2 cos φ2,

(2.43)

Iа = I1а + I2а.

Реактивные составляющие токов равны

I1р = I1 sin φ1, I2р = I2 sin φ2,

 

(2.44)

Iр = I1р - I2р.

В последнем уравнении взят знак минус, поскольку составляющие I1р (индуктивная) и I2р (емкостная) направлены в разные стороны от оси U.

Полный ток находится из уравнений

(2.45)

gif-file, 2KB,

(2.46)

φ = arctg(Iр / Iа).

В методе проводимостей также используется разложение на активные и реактивные составляющие. Используя уравнение (2.30) активные составляющие токов записываются в виде

(2.47)

gif-file, 2KB,

где через g1 = R1 / Z12 обозначена величина названная активной проводимостью первой ветви. Аналогичным образом получим

gif-file, 2KB, (2.48)

где g2 = R2 / Z22; а величину g = g1 + g2 называют активной проводимостью всей цепи.

Используя уравнение (2.31) запишем реактивные составляющие токов

gif-file, 2KB,

gif-file, 2KB,

где b1 и b2 – реактивные проводимости ветвей b1 = XL / Z12, b2 = XC / Z22. Для реактивной проводимости всей цепи имеем

(2.50)

b = b1 - b2.

В этом уравнении взят знак минус, из тех же соображений, как и в уравнении (2.44). Величина тока I и угол φ находятся из соотношений (2.45) и (2.46).

4. Анализ расчетных данных.

В зависимости от соотношения реактивных проводимостей b1 и b2 возможны три варианта: b1 > b2; b1 < b2; b1 = b2.

Для варианта b1 > b2 имеем I1р > I2р, φ > 0. Цепь имеет активно-индуктивный характер. Векторная диаграмма изображена на рис. 2.21.

gif-file, 2KB

При b1 < b2 токи I1р < I2р, φ < 0. Цепь имеет активно-емкостный характер. Векторная диаграмма изображена на рис. 2.22.

gif-file, 2KB

Если b1 = b2, то I1р = I2р, φ = 0. Цепь имеет чисто активное сопротивление. Ток потребляемый цепью от источника наименьший. Этот режим называется резонанс токов. Векторная диаграмма изображена на рис. 2.23.

gif-file, 2KB

2.9. Повышение коэффициента мощности в электрической цепи

Активная мощность потребителя определена формулой

P = U I cos φ.

Величину cos φ здесь называют коэффициентом мощности. Ток в линии питающей потребителя с заданной мощностью Р равен

(2.51)

I = P / (U cos φ).

и будет тем больше, чем меньше cos φ. При этом возрастают потери в питающей линии. Для их снижения желательно увеличивать cos φ. Большинство потребителей имеет активно-индуктивную нагрузку. Увеличение cos φ возможно путем компенсации индуктивной составляющей тока путем подключения параллельно нагрузке конденсатора (рис. 2.24).

gif-file, 2KB

Расчет емкости дополнительного конденсатора для обеспечения заданного cos φ проводится следующим образом. Пусть известны параметры нагрузки Pн, U и Iн . Можно определить cosφн

cos φн = P / (U Iн).

Из п. 2.8.3 следует, что подключение емкости не изменяет активную составляющую нагрузки

(2.52)

Iна = Iн cos φн = Pн / U

Реактивная составляющая нагрузки Iнр может быть выражена через tg φн

Iнр = Iна tg φн.

При подключении емкости величина Iнр уменьшается на величину IC.

Если задано, что коэффициент мощности в питающей линии должен быть равен cos φ, то можно определить величину реактивной составляющей тока в линии

Iр = Iа tg φ.

Уменьшение реактивной составляющей нагрузки с Iнр до Iр определяет величину тока компенсирующей емкости

(2.53)

IC = Iнр - Iр = Iа (tg φн - tg φ).

Подставляя в уравнение (2.53), значение Iна из (2.52) и учитывая, что IC = U / XC = U ωC, получим U ωC = Pн / U · (tg φн - tg φ), откуда для емкости конденсатора имеем

C = Pн / ωU2 · (tg φн - tg φ).

Для больших значений Pн величина емкости C может оказаться слишком большой, что технически трудно реализовать. В этом случае используют синхронные компенсирующие машины.

2.10. Комплексный (символический) метод расчета цепей синусоидального тока

Все параметры цепи представляются в комплексной форме.

gif-file, 2KBgif-file, 2KB

gif-file, 2KB – комплексное мгновенное значение;
gif-file, 2KB – комплексное действующее значение силы тока;
gif-file, 2KB – комплексное действующее значение напряжения.

Пример.

gif-file, 2KB

Законы Ома и Кирхгофа в комплексной форме

Достоинство комплексного метода: при его применении в анализе цепей переменного тока можно применять все известные методы анализа постоянного тока.

Закон Ома

Под законом Ома в комплексной форме понимают:

Í = Ú / Z

gif-file, 2KB

Комплексное сопротивление участка цепи представляет собой комплексное число, вещественная часть которого соответствует величине активного сопротивления, а коэффициент при мнимой части – реактивному сопротивлению.

По виду записи комплексного сопротивления можно судить о характере участка цепи:

R + j X — активно-индуктивное сопротивление;
R – j X — активно-емкостное.

Примеры.

gif-file, 2KB

Первый закон Кирхгофа в комплексной форме

Алгебраическая сумма комплексных действующих значений токов в узле равна нулю.

gif-file, 2KB

Второй закон Кирхгофа в комплексной форме

В замкнутом контуре электрической цепи алгебраическая сумма комплексных действующих значений ЭДС равна алгебраической сумме комплексных падений напряжений в нём.

gif-file, 2KB.

При использовании символического метода можно пользоваться понятиями мощностей. Но в комплексной форме можно записать только полную мощность:

gif-file, 2KB

где Ï — комплексно-сопряженный ток

S cos φ ± j S sin φ = P ± j Q.

Полная мощность в комплексной форме представляет собой комплексное число, вещественная часть которого соответствует активной мощности рассматриваемого участка, а коэффициент при мнимой части – реактивной мощности участка. Значение знака перед мнимой частью: “+” означает, что напряжение опережает ток, нагрузка – активно-индуктивная; “–” означает, что нагрузка - активно-емкостная.


23.01.2017; 18:10
хиты: 70
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь