пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

1.Резонанс токов в однофазных цепях синусоидального тока.2.Метод контурных токов в расчётах эл. цепей

1.

 

Параллельное включение конденсатора и катушки индуктивности в цепь переменного тока

Рассмотрим явления в цепи переменного тока, содержащей генератор, конденсатор и катушку индуктивности, соединенные параллельно. Предположим при этом, что активным сопротивлением цепь не обладает.

Очевидно, в такой цепи напряжение как на катушке, так и на конденсаторе в любой момент времени равно напряжению, развиваемому генератором.

Общий же ток в цепи слагается из токов в ее разветвлениях. Ток в индуктивной ветви отстает по фазе от напряжения на четверть периода, а ток в емкостной ветви опережает его на те же четверть периода. Поэтому токи в ветвях в любой момент времени оказываются сдвинутыми по фазе один относительно другого на полупериода, т. е. находятся в противофазе. Таким образом токи в ветвях в любой момент времени направлены навстречу один другому, а общий ток в неразветвленной части цепи равен разности их.

Это дает нам право написать равенство I = IL -IC

где I - действующее значение общего тока в цепиIL и IC - действующие значения токов в.ветвях.

Пользуясь законом Ома для определения действующих значений тока в ветвях, получим:

Il = U / XL и IC = U / XC

Если в цепи преобладает индуктивное сопротивление, т. е. XL больше XC, ток в катушке меньше тока в конденсаторе; следовательно, ток в неразветвленном участке цепи носит емкостный характер, и цепь в целом для генератора будет емкостной. И, наоборот, при ХC большем XL, ток в конденсаторе меньше тока в катушке; следовательно, ток в неразветвленном участке цепи имеет индуктивный характер, и цепь в целом для генератора будет индуктивной.

При этом не следует забывать, что в том и другом случае нагрузка реактивная, т. е. цепь не потребляет энергии генератора.

Резонанс токов

Рассмотрим теперь случай, когда у параллельно соединенных конденсатора и катушки оказались равными их реактивные сопротивления, т. е. XlL = XC.

Если мы, как и прежде, будем считать, что катушка и конденсатор не обладают активным сопротивлением, то при равенстве их реактивных сопротивлений (YL = YC) общий ток в неразветвленной части цепи окажется равным нулю, тогда как в ветвях будут протекать равные токи наибольшей величины. В цепи в этом случае наступает явление резонанса токов.

При резонансе токов действующие значения токов в каждом разветвлении, определяемые отношениями IL = U / XL и IC = U / XC будут равны между собой, так XL = ХC.

Вывод, к которому мы пришли, может показаться на первый взгляд довольно странным. Действительно, генератор нагружен двумя сопротивлениями, а тока в неразветвленной части цепи нет, тогда как в самих сопротивлениях протекают равные и притом наибольшие по величине токи. 

Объясняется это поведением магнитного поля катушки и электрического поля конденсатора. При резонансе токов, как и прирезонансе напряжений, происходит колебание энергии между полем катушки и полем конденсатора. Генератор, сообщив однажды энергию цепи, сказывается как бы изолированным. Его можно было бы совсем отключить, и ток в разветвленной части цепи поддерживался бы без генератора энергией, которую в самом начале запасла цепь. Равно и напряжение на зажимах цепи оставалось бы точно таким, какое развивал генератор.

Таким образом, и при параллельном соединении катушки индуктивности и конденсатора мы получили колебательный контур, отличающийся от описанного выше только тем, что генератор, создающий колебания, не включен непосредственно в контур и контур получается замкнутым.

<p align="justОднако наши рассуждения справедливы только в том случае, когда активное сопротивление цепи равно нулю. В действительности этого нет, и поэтому при резонансе токов цепь неизбежно будет потреблять энергию генератора, которая нужна для преодоления активного сопротивления цепи. Следовательно, при резонансе токов цепь представляет собой чисто активное сопротивление. То же мы наблюдали и в последовательной цепи при резонансе напряжений. <p align=" justify=" style=" style"="" style="margin: 0px; padding: 0px; color: rgb(85, 85, 85); font-family: Tahoma, sans-serif; font-size: 12px; line-height: 19px; text-align: -webkit-left;">

Графики токов, напряжения и мощности в цепи при резонансе токов
Графики токов, напряжения и мощности в цепи при резонансе токов: а — активное сопротивление равно нулю, цепь мощности не потребляет; б — цепь обладает активным сопротивлением, в неразветвленной части цепи появился ток, цепь потребляет мощность

 

Значения L, С и f, при которых наступает резонанс токов, определяются, как и при резонансе напряжений (если пренебречь активным сопротивлением контура), из равенства:

ωL = 1 / ωC

Следовательно:

fрез = 1 / 2π√LC

Lрез = 1 / ω2С

Срез = 1 / ω2L

Изменяя любую из этих трех величин, можно добиться равенства Xl = Xc, т. е. превратить цепь в колебательный контур.

Итак, мы получили замкнутый колебательный контур, в котором можно вызвать электрические колебания, т. е. переменный ток. И если бы не активное сопротивление, которым обладает всякий колебательный контур, в нем непрерывно мог бы существовать переменный ток. Наличие же активного сопротивления приводит к тому, что колебания в контуре постепенно затухают и, чтобы поддержать их, необходим источник энергии - генератор переменного тока.

В цепях несинусоидального тока резонансные режимы возможны для различных гармоничных состовляющих.

Резонанс токов широко используется в практике. Явление резонанса токов используется в полосовых фильтрах как электрическая «пробка», задерживающая определенную частоту. Так как току с частотой f оказывается значительное сопротивление, то и падение напряжения на контуре при частоте f будет максимальным. Это свойство контура получило название избирательность, оно используется в радиоприемниках для выделения сигнала конкретной радиостанции. Колебательный контур, работающий в режиме резонанса токов, является одним из основных узлов электронных генераторов.

2.

 

 Метод контурных токов

В методе контурных токов за основные неизвестные величины принимают контурные токи, которые замыкаются только по независимым контурам (главным контурам). Контурные токи находят, решая систему уравнений, составленную по второму закону Кирхгофа для каждого контура. По найденным контурным токам определяют токи ветвей схемы.


Алгоритмом метода контурных токов:

1. Задаются направлением токов ветвей и обозначают их на схеме.

2. Определяют независимые контуры и их нумеруют. При наличии в схеме источников токанезависимые контуры, для которых составляются уравнения метода контурных токов, можно определить, если мысленно удалить источники тока.

3. Выбирают направление контурных токов (целесообразно в одну сторону) и составляют уравнения по методу контурных токов, обходя каждый контур в направлении его контурного токаКонтурный ток, проходящий через источник тока, известен и равен току источника тока(через источник тока проходит только один контурный ток!).

4. Полученную систему алгебраических уравнений решают относительно неизвестных контурных токов.

5. Искомые токи по методу контурных токов находят как алгебраическую сумму контурных токов, проходящих по данной ветви. Токи в ветвях связи равны контурным токам.


Решение задач методом контурных токов


Задача 1.3.1. Определить токи в ветвях схемы рис. 1.3.1 методом контурных токов. Правильность решения проверить по балансу мощностей.

Задача 1.3.1. Определить токи в ветвях схемы методом контурных токов. Правильность решения проверить по балансу мощностей

Рис. 1.3.1

Решение

1. В соответствии с алгоритмом, зададимся направлением токов ветвей и обозначим их на схеме рис. 1.3.1.

2. Определяем независимые контура и выбираем направления контурных токов Iк1Iк2Iк3.

3. Поскольку в схеме имеется ветвь, содержащая источник тока Jконтурный ток Iк3 = J, а для контурных токов Iк1 и Iк2 запишем систему уравнений метода контурных токов:

{ I к1 ⋅ ( R 3 + R 6 )− I к2 ⋅ R 6 −J⋅ R 3 =− E 1 − E 6 I к2 ⋅ ( R 4 + R 5 + R 6 )− I к1 ⋅ R 6 −J⋅ R 4 = E 6

или

{      I к1 ⋅ ( R 3 + R 6 )− I к2 ⋅ R 6                              =− E 1 − E 6 +J⋅ R 3 − I к1 ⋅ R 6                  + I к2 ⋅ ( R 4 + R 5 + R 6 )= E 6+J⋅ R 4

Подставив значения сопротивлений, получаем численную систему уравнений метода контурных токов с двумя неизвестными контурными токами:

{     25 I к1      −5 I к2 =−5    −5 I к1 +14 I к2 =40

откуда

I к1 =0,4  A;    I к2 =3  A.

4. Определяем токи в ветвях схемы по методу контурных токов:

I 1 = I к1 =0,4  A;    I 5 =− I к2 =−3  A;    I 6 = I к2 − I к1 =3−0,4=2,6  A.

Хотя все токи в ветвях можно определить методом контурных токов (I3 = Iк3 – Iк1I4 = Iк3 – Iк2), токи I3 и I4 определим по первому закону Кирхгофа. Составим уравнения по первому закону Кирхгофа:

для узла a:

− I 5 −J+ I 4 =0,

откуда

I 4 = I 5 +J= ( −3 )+2=−1  A;

для узла b:

− I 1 − I 3 +J=0,

откуда

I 3 =J− I 1 =2−0,4=1,6  A.

5. Правильность решения проверяем по балансу мощностей. Предварительно находим напряжение на зажимах источника тока:

U ad = φ a − φ d =J⋅ R 2 + I 3 ⋅ R 3 + I 4 ⋅ R 4 − E 2 =          =2⋅10+1,6⋅20+ ( −1 )⋅5−10=37  B.

Тогда

    E 2 ⋅J+ U ad ⋅J+ E 1 ⋅ ( − I 1 )+ E 6 ⋅ I 6 = J 2 ⋅ R 2 + I 3 2 ⋅ R 3 + I 4 2 ⋅ R 4 + I 5 2 ⋅ R 5 + I 6 2 ⋅ R 6 ;10⋅2+37⋅2+15⋅ ( −0,4 )+30⋅2,6= 2 2 ⋅10+ 1,6 2 ⋅20+ ( −1 ) 2 ⋅5+ ( −3 ) 2 ⋅4+ 2,6 2 ⋅5;                                                                  166  Вт=166  Вт.

 

 


хиты: 19
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь