пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Индуцированное поглощение и усиление света в среде с инверсией населенности

 

В основе действия квантового генератора лежит открытый А. Эйнштейном тип взаимодействия электромагнитного излучения с веществом — вынужденное испускание. В соответствии с планетарной моделью Э. Резерфорда атомы представляют собой квантово-механические системы, состоящие из ядра и вращающихся вокруг него по определенным орбитам электронов. Начиная со второго элемента периодической системы Д. И. Менделеева, с атома гелия, на каждой заполненной электронной орбите (энергетическом уровне) имеется как минимум два электрона с противоположными спинами. На атомном уровне существует три типа взаимодействия электромагнитного излучения с веществом. Первый тип взаимодействия — поглощение света — заключается в следующем. Атом находится в основном (спокойном, невозбужденном) состоянии. При этом электроны внешней орбиты находятся на ближнем от ядра расстоянии. При воздействии на данный атом светового потока (электромагнитного излучения оптического спектра) один из электронов с энергией Е] может поглотить пролетающий фотон, квант энергии, и этот электрон перейдет на более удаленную от ядра орбиту. Произойдет акт поглощения света веществом (рис. 1а), атом перейдет в электронно-возбужденное состояние, уровень его энергии повысится и станет равной Е2. Число атомов, находящихся в электронно-возбужденное состояние и обладающих энергией Е2, называется населенностью энергетического уровня данного вещества.

В реальных условиях атом не может постоянно находиться в электронно-возбужденном состоянии, он стремится перейти в основное, отдавая в окружающую среду часть энергии в виде испускания при переходе фотона. При этом происходит акт спонтанного испускания, второй тип взаимодействия излучения с веществом (рис. 16), а электрон перейдет на ближнюю к ядру орбиту.

 

17_small_1327039737.jpg

 

При третьем типе взаимодействия (рис. 1в) атом исходно находится в электронно-возбужденном состоянии.

Попадая под действие светового потока, фотоны которого обладают энергией, равной разнице энергии данного атома в возбужденном и в невозбужденном состоянии, этот атом может перейти в основное состояние, испустив соответственно фотон. Испущенный фотон по по всем параметрам (энергия, направление движения и др.) будет идентичен фотону, который стимулировал переход. Этот процесс называется вынужденным испусканием, а действующий световой поток фотонов при этом усиливается.

Следовательно, если через вещество, атомы которого находятся в электронно-возбужденном состоянии пропустить световой поток определенной длины волны, энергия фотонов которой равна разнице энергетических уровней атомов данного вещества, то произойдет усиление светового потока в результате вынужденного испускания.

Однако, вероятность поглощения фотона атомом, находящимся на нижнем энергетическом уровне (в основном состоянии), равна вероятности того, что этот фотон вызовет вынужденное испускание в атоме, находящемся в электронно-возбужденном состоянии. Для усиления света необходимо, чтобы в среде (веществе) было превышение населенности верхнего энергетического уровня (Е2) над нижним (Е]), т. е. следует создать инверсную заселенность. Процесс ее создания называется накачкой, а среда, в которой создана инверсная заселенность, называется активной.

В квантовом генераторе нет внешнего потока фотонов, инверсная заселенность создается внутри него с помощью различных источников накачки. В зависимости от источников существуют различные способы накачки:

  • оптический — мощная лампа-вспышка;
  • газовый разряд в рабочем веществе (активной среде);
  • инжекция (перенос) носителей тока в полупроводнике в зоне
    р—п переходах;
  • электронное возбуждение (облучение в вакууме чистого полупроводника потоком электронов);
  • тепловой (нагревание газа с последующим его резким охлаждением;
  • химический (использование энергии химических реакций) и некоторые другие.

Для того, чтобы активная среда излучала когерентный монохроматический свет, необходимо ввести обратную связь, т. е. часть излученного этой средой светового потока направить обратно в среду для осуществления вынужденного излучения. Положительная обратная связь осуществляется при помощи оптических резонаторов, которые в элементарном варианте представляют собой два соосно (параллельно и по одной оси) расположенных зеркала, одно из которых полупрозрачное, а другое — «глухое», т. е. полностью отражает световой поток. Рабочее вещество (активная среда), в котором создана инверсная заселенность, располагают между зеркалами. Вынужденное излучение проходит через активную среду, усиливается, отражается от зеркала, вновь проходит через среду и еще более усиливается. Через полупрозрачное зеркало часть излучения испускается во внешнюю среду, а часть отражается обратно в среду и снова усиливается. При определенных условиях поток фотонов внутри рабочего вещества начнет лавинообразно нарастать, начнется генерация монохроматического когерентного света.

На рис. 2 схематично представлен принцип работы оптического резонатора. В ситуации, изображенной на рис. 2а, преобладающее количество частиц рабочего вещества, представленные светлыми кружками, находятся в основном состоянии, т. е. на нижнем энергетическом уровне. Лишь небольшое количество частиц, представленные темными кружками, находятся в электронно-возбужденном состоянии. При воздействии на рабочее вещество источником накачки (рис. 26) основное количество частиц переходит в возбужденное состояние (возросло количество темных кружков), создана инверсная заселенность. Далее (рис. 2в) происходит спонтанное излучение некоторых частиц, находящихся в электронно-возбужденном состоянии. Излучение, направленное под углом к оси резонатора, покинет рабочее вещество и резонатор. Излучение, которое направлено вдоль оси резонатора, подойдет к зеркальной поверхности.

 

17_small_1327039824.jpg

 

У полупрозрачного зеркала (рис. 2 г) часть излучения пройдет сквозь него в окружающую среду, а часть отразится и снова направится в рабочее вещество, вовлекая в процесс вынужденного излучения частицы, находящиеся в возбужденном состоянии.

У «глухого» зеркала весь лучевой поток отразится и вновь пройдет рабочее вещество, индуцируя излучение всех оставшихся возбужденных частиц (рис. 2 д). На рис. 2 е отражена ситуация, когда все возбужденные частицы отдали свою запасенную энергию, а на выходе резонатора, на стороне полупрозрачного зеркала образовался мощный поток индуцированного излучения.

Основные конструктивные элементы лазеров включают в себя рабочее вещество с определенными энергетическими уровнями составляющих их атомов и молекул, источник накачки, создающий инверсную заселенность в рабочем веществе, и оптический резонатор. Существует большое количество различных лазеров, однако все они имеют одну и ту же и притом простую принципиальную схему устройства, которая представлена на рис. 3.

 

17_small_1327039913.jpg

 

Исключение составляют полупроводниковые лазеры из-за своей специфичности, поскольку у них всё особенное: и физика процессов, и методы накачки, и конструкция. Полупроводники представляют собой кристаллические образования. В отдельном атоме энергия электрона принимает строго определенные дискретные значения, и поэтому энергетические состояния электрона в атоме описываются на языке уровней. В кристалле полупроводника энергетические уровни образуют энергетические зоны. В чистом, не содержащем каких-либо примесей полупроводнике имеются две зоны: так называемая валентная зона и расположенная над ней (по шкале энергий) зона проводимости. Между ними имеется промежуток запрещенных значений энергии, который называется запрещенной зоной. При температуре полупроводника, равной абсолютному нулю, валентная зона должна быть полностью заполнена электронами, а зона проводимости должна быть пустой. В реальных условиях температура всегда выше абсолютного нуля. Но повышение температуры приводит к тепловому возбуждению электронов, часть из них перескакивает из валентной зоны в зону проводимости. В результате этого процесса в зоне проводимости появляется некоторое (относительно небольшое) количество электронов, а в валентной зоне до ее полного заполнения будет не хватать соответствующего количества электронов. Электронная вакансия в валентной зоне представляется положительно заряженной частицей, которая именуется дыркой. Квантовый переход электрона через запрещенную зону снизу вверх рассматривается как процесс генерации электронно-дырочной пары, при этом электроны сосредоточены у нижнего края зоны проводимости, а дырки — у верхнего края валентной зоны. Переходы через запрещенную зону возможны не только снизу вверх, но и сверху вниз. Такой процесс называется рекомбинацией электрона и дырки.

При облучении чистого полупроводника светом, энергия фотонов которого несколько превышает ширину запрещенной зоны, в кристалле полупроводника могут совершаться три типа взаимодействия света с .веществом: поглощение, спонтанное испускание и вынужденное испускание света (рис. 4). Первый тип взаимодействия возможен при поглощении фотона электроном, находящимся вблизи верхнего края валентной зоны. При этом энергетическая мощность электрона станет достаточной для преодоления запрещенной зоны, и он совершит квантовый переход в зону проводимости (рис. 4а). Спонтанное испускание света возможно при самопроизвольном возвращении электрона из зоны проводимости в валентную зону с испусканием кванта энергии — фотона (рис. 46). Внешнее излучение может инициировать переход в валентную зону электрона, находящегося вблизи нижнего края зоны проводимости. Результатом этого, третьего типа взаимодействия света с веществом полупроводника будет рождение вторичного фотона, идентичного по своим параметрам и направлению движения фотону, инициировавшему переход (рис. 4в).

 

17_small_1327039981.jpg

 

Для генерации лазерного излучения необходимо создать в полупроводнике инверсную заселенность «рабочих уровней» — создать достаточно высокую концентрацию электронов у нижнего края зоны проводимости и соответственно высокую концентрацию дырок у края валентной зоны. Для этих целей в чистых полупроводниковых лазерах обычно применяют накачку потоком электронов.

 

17_small_1327040068.jpg

 

Зеркалами резонатора являются отполированные грани кристалла полупроводника. Недостатком таких лазеров является то, что многие полупроводниковые материалы генерируют лазерное излучение лишь при очень низких температурах, а бомбардировка кристаллов полупроводников потоком электронов вызывает его сильное нагревание. Это требует наличия дополнительных охладительных устройств, что усложняет конструкцию аппарата и увеличивает его габариты.

Свойства полупроводников с примесями существенно отличаются от свойств беспримесных, чистых полупроводников. Это обусловлено тем, что атомы одних примесей легко отдают в зону проводимости по одному из своих электронов. Эти примеси называются донорными, а полупроводник с такими примесями — п-полупро- водником. Атомы других примесей, напротив, захватывают по одному электрону из валентной зоны, и такие примеси являются акцепторными, а полупроводник с такими примесями — р-полу- проводником. Энергетический уровень примесных атомов располагается внутри запрещенной зоны: у «-полупроводников — недалеко от нижнего края зоны проводимости, у /^-полупроводников — вблизи верхнего края валентной зоны (см. рис. 6).

Если в этой области создать электрическое напряжение так, чтобы со стороны р-полупроводника был положительный полюс, а со стороны п-полупроводника отрицательный, то под действием электрического поля электроны из п-полупроводника и дырки из /^-полупроводника будут перемещаться (инжектироваться) в область р-п — перехода.

При рекомбинации электронов и дырок будут испускаться фотоны, а при наличии оптического резонатора возможна генерация лазерного излучения.

Зеркалами оптического резонатора являются отполированные грани кристалла полупроводника, ориентированные перпендикулярно плоскости р-п — перехода (см рис. 7). Такие лазеры отличаются миниатюрностью, поскольку размеры полупроводникового активного элемента могут составлять около 1 мм.

В зависимости от рассматриваемого признака все лазеры подразделяются следующим образом (Н. Б. Делоне, 1989; В. Е. Илларионов, А. И. Ларюшин, 2000; Н. В. Карлов, 1988; Л. В. Тарасов, 1988; Б. Ф. Федоров, 1988).

 

17_small_1327040139.jpg

 

Первый признак. Принято различать лазерные усилители и генераторы. В усилителях на входе подается слабое лазерное излучение, а на выходе оно соответственно усиливается. В генераторах нет внешнего излучения, оно возникает в рабочем веществе за счет его возбуждения с помощью различных источников накачки. Все медицинские лазерные аппараты являются генераторами.

Второй признак — физическое состояние рабочего вещества. В соответствии с этим лазеры подразделяются на твердотельные (рубиновые, сапфировые и др.), газовые (гелий-неоновые, гелий- кадмиевые, аргоновые, углекислотные и др.), жидкосные (жидкий диэлектрик с примесными рабочими атомами редкоземельных металлов) и полупроводниковые (арсенид-галлиевые, арсенид-фосфид- галлиевые, селенид-свинцовые и др.).

Способ возбуждения рабочего вещества является третьим отличительным признаком лазеров. В зависимости от источника возбуждения различают лазеры с оптической накачкой, с накачкой за счет газового разряда, электронного возбуждения, инжекции носителей заряда, с тепловой, химической накачкой и некоторые другие.

Спектр излучения лазера является следующим признаком классификации. Если излучение сосредоточено в узком интервале длин волн, то принято считать лазер монохроматичным и в его технических данных указывается конкретная длина волны; если в широком интервале, то следует считать лазер широкополосным и указывается диапазон длин волн.

По характеру излучаемой энергии различают импульсные лазеры и лазеры с непрерывным излучением. Не следует смешивать понятия импульсный лазер и лазер с частотной модуляцией непре- рывного излучения, поскольку во втором случае мы получаем по сути дела прерывистое излучение различной частоты. Импульсные лазеры обладают большой мощностью в одиночном импульсе, достигающие 10 Вт, тогда как их среднеимпульсная мощность, определяемая по соответствующим формулам, сравнительно невелика. У непрерывных лазеров с частотной модуляцией мощность в так называемом импульсе ниже мощности непрерывного излучения.

По средней выходной мощности излучения (следующий признак классификации) лазеры подразделяются на:

  • высокоэнергетические (создаваемая плотность потока мощность излучения на поверхности объекта или биообъекта — свыше 10 Вт/см2);
  • среднеэнергетические (создаваемая плотность потока мощность излучения — от 0,4 до 10 Вт/см2);
  • низкоэнергетические (создаваемая плотность потока мощность излучения — менее 0,4 Вт/см2).

Некоторые авторы низкоэнергетическое лазерное излучение подразделяют на:

  • мягкое (создаваемая энергетическая облученность — Е или плотность потока мощности на облучаемой поверхности — до 4 мВт/см2);
  • среднее (Е — от 4 до 30 мВт/см2);
  • жесткое (Е — более 30 мВт/см2).

В соответствии с «Санитарными нормами и правилами устройства и эксплуатации лазеров № 5804-91» по степени опасности генерируемого излучения для обслуживающего персонала лазеры подразделяются на четыре класса.

К лазерам первого класса относятся такие технические устройства, выходное коллиминированное (заключенное в ограниченном телесном угле) излучение которых не представляет опасность при облучении глаз и кожи человека.

Лазеры второго класса — это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным излучением.

Лазеры третьего класса — это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности, и (или) при облучении кожи прямым и зеркально отраженным излучением.

Лазеры четвертого класса — это устройства, выходное излучение которых представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.


хиты: 36
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь