пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Закон излучения Кирхгофа. Правило Прево.

 

Закон излучения Кирхгофа - отношение испускательной и поглощательной способностей не зависит от природы тела, оно является для всех тел одной и той же.

LARGE frac{r_{omega_T}}{alpha _{omega _T}}=f(omega ,T)


Закон излучения Кирхгофа

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него Large alpha _{omega _T} = 1 (Поглощательная способность тела) . Поэтому функция совпадает с испускательной способностью Large r_{omega_T}

В формуле мы использовали :

Large r_{omega_T} — Испускательная способность тела

Large alpha _{omega _T} — Поглощательная способность тела

Large f(omega,T) — Функция Кирхгофа

Закон Кирхгофа. Между испускательными и поглощательными свойствами любого тела должна существовать связь. Ведь в опыте с равновесным тепловым излучением (рис. 1.1) равновесие в системе может установиться только в том случае, если каждое тело будет излучать в единицу времени столько же энергии, сколько оно поглощает. Это означает, что тела, интенсивнее поглощающие излучение какой-либо частоты, будут это излучение интенсивнее и испускать.
      Поэтому, в соответствии с таким принципом детального равновесия, отношение испускательной и поглощательной способностей одинаково для всех тел в природе, включая абсолютно черное тело, и при данной температуре является одной и той же универсальной функцией частоты (длины волны).
      Этот закон теплового излучения, установленный в 1859 г. Г.Кирхгофом при рассмотрении термодинамических закономерностей равновесных систем с излучением, можно записать в виде соотношения
     
Формула 1.5 (1.5)
     или
     
Формула 1.6 (1.6)
     где индексы 1, 2, 3... соответствуют различным реальным телам.
      Из закона Кирхгофа следует, что универсальные функции fml43.gif и fml44.gif есть спектральные испускательные способности fml45.gif и fml46.gif абсолютно черного тела по шкале частот или длин волн, соответственно. Поэтому связь между ними определяется формулой (1.3).
      Излучение абсолютно черного тела имеет универсальный характер в теории теплового излучения. Реальное тело излучает при любой температуре всегда меньше энергии, чем абсолютно черное тело. Зная испускательную способность абсолютно черного тела (универсальную функцию Кирхгофа) и поглощательную способность реального тела, из закона Кирхгофа можно определить энергию, излучаемую этим телом в любом диапазоне частот или длин волн.
 
Правило Прево
 

Нагретые тела излучают электромагнитные волны. Это излучение осуществляется за счет преобразования энергии теплового движения частиц тела в энергию излучения.

Правило Прево: Если два тела, находящиеся при одной и той же температуре, поглощают разные количества энергии, то их тепловое излучение при этой температуре должно быть различным.

 

Основная величина, характеризующая тепловое состояние тела, есть его температура. Эта величина является определяющей также и в явлениях теплового излучения, что можно без труда усмотреть из следующего грубого опыта. Нагревая какое-либо тугоплавкое вещество (уголь, металл), мы замечаем, что видимое на глаз (тёмнокрасное) свечение появляется лишь при определенной температуре (около 500° С). По мере повышения температуры свечение становится ярче и обогащается более короткими волнами, переходя примерно при 1500° С в яркое белое каление. Контролируя свечение спектроскопом, мы можем видеть, как по мере повышения температуры постепенно развивается сплошной спектр свечения, начиная от узкой области красного излучения () и переходя постепенно в полный видимый спектр. Наблюдая свечение при помощи термоэлемента, можно обнаружить и инфракрасное, и ультрафиолетовое излучение нагреваемого тела.

В этих опытах выясняется и другая важнейшая черта температурного излучения. Спектральный состав излучения, соответствующего данной температуре, для различных хорошо поглощающих веществ (например, окислов различных металлов, угля и т. д.) практически одинаков, но для прозрачных тел излучение может иметь заметно отличный состав. Так, нагревая кусок стали, мы при температуре около 800° С увидим яркое вишнево-красное каление, тогда как прозрачный стерженек плавленного кварца при той же температуре совсем не светится, не испускает видимых (в частности, красных) лучей. Таким образом, обнаруживается большая способность к излучению тел, хорошо поглощающих. Это обстоятельство определяет условия обмена лучистой энергией, ведущего к установлению теплового равновесия между телами.

Опыт показывает, что тела различной температуры, могущие передавать друг другу тепло, по истечении некоторого времени принимают одинаковую температуру, т. е. приходят в тепловое равновесие. Это происходит и в том случае, когда наши тела заключены в непроницаемую для тепла оболочку, в которой создан вакуум, т. е. исключена возможность теплового обмена в силу теплопроводности и конвекции, и имеет место лишь излучение и поглощение. Излучая и поглощая тепло, тела  и в конце концов принимают одинаковую температуру Т. Тепловое равновесие имеет динамический характер, т. е. и при одинаковых температурах всех тел происходит, конечно, излучение и поглощение лучистой энергии, но так, что в единицу времени тело столько же излучает тепла, сколько оно его поглощает. Отсюда ясно, что если два тела  и А.2 обладают различной способностью к поглощению, то и их способность к испусканию не может быть одинаковой. Действительно, раз установилось тепловое равновесие, то для каждого тела должно соблюдаться равенство между количеством испускаемой и поглощаемой им в единицу времени энергии. Если два тела поглощают разные количества энергии, то и испускание должно быть различно (Прево, 1809 г.).

Нетрудно подтвердить это заключение простыми опытами. В качестве излучателя возьмем наполненную горячей водой коробку (рис. 1.1), плоские стенки которой обладают различной способностью к поглощению: одна сделана из хорошо полированного металла и поглощает очень мало, а другая покрыта черным слоем oкисла и почти нацело поглощает падающую на нее энергию. В качестве приемника удобно использовать воздушный термометр, резервуар которого Q также представляет собой металлическую коробку со стенками из различного материала.

Рис 1.1 Приборы для                        Рис 1.2. Опыт, показывающий

демонстрации правила Прево.                пропорциональность между

G- излучающий сосуд;                        поглощательной и испускательной

Q-воздушный термометр.                        способностями поверхности.

                                               G- излучающий сосуд;

                                                и -дифференциальный воз-

душный термометр.

 

По расширению воздуха в Q можно судить о количествe, поступающего за единицу времени тепла. Поворачивая сосуд G к термометру (или Q к излучателю) блестящей или черной стороной, можно убедиться, что блестящая поверхность меньше излучает и меньше поглощает, чем черная. Сделав термометр дифференциальным и придав всему расположению вид, изображенный на рис. 1.2 и понятный без пояснения, мы заметим, что капля в дифференциальном термометре остается на месте, т.е. оба резервуара  и  получают одинаковое количество тепла. В таком видоизменении этот опыт позволяет заключить, что поглощательная способность какой-либо поверхности пропорциональна ее испускательной способности.

Описанные опыты имеют важный принципиальный недостаток, ибо излучательная и поглощательная способности сравниваются при температуре, а способность тела к излучению и поглощению зависит от его температуры. Впрочем, для выбранных объектов (полированный и черный металлы) и незначительной разности температур (меньше  С) это различие играет ничтожную роль.

 

хиты: 58
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь