пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Уравнение Максвелла в веществе. Напряженность магнитного поля

Напряженность магнитного поля необходима для определения магнитной индукции поля, создаваемого токами различной конфигурации в различных средах. Напряженность магнитного поля характеризует магнитное поле в вакууме.

Напряженность магнитного поля (формула) векторная физическая величина, равная:

naprmagpolya.jpg

 

 

 

 

Напряжённость электри́ческого по́ля — векторная физическая величина, характеризующая электрическое поле в данной точке и численно равная отношению силы vec F, действующей на неподвижный[1] пробный заряд, помещенный в данную точку поля, к величине этого заряда q:

vec E= frac{vec F}{q}.

Из этого определения видно, почему напряженность электрического поля иногда называется силовой характеристикой электрического поля (действительно, всё отличие от вектора силы, действующей на заряженную частицу, только в постоянном[2] множителе).


В каждой точке пространства в данный момент времени существует свое значение вектора vec E (вообще говоря - разное[3] в разных точках пространства), таким образом, vec E - это векторное поле. Формально это выражается в записи

vec E = vec E(x,y,z,t),

представляющей напряженность электрического поля как функцию пространственных координат (и времени, т.к. vec E может меняться со временем). Это поле вместе с полем вектора магнитной индукции представляет собой электромагнитное поле[4], и законы, которым оно подчиняется, есть предмет электродинамики.

Напряжённость электрического поля в СИ измеряется в вольтах на метр [В/м] или в ньютонах на кулон [Н/Кл].

 

Достаточным вместе с формулой силы Лоренца теоретическим фундаментом классической электродинамики являются уравнения электромагнитного поля, называемыеуравнениями Максвелла. Их стандартная традиционная форма представляет собой четыре уравнения, в три из которых входит вектор напряженности электрического поля:

mathrm{div} vec E = frac{rho}{varepsilon_0}                 mathrm{rot}, vec E = - frac{partial vec B}{partial t}

mathrm{div} vec B = 0                    mathrm{rot}, vec B = mu_0 vec j + frac{1}{c^2}frac{partial vec E}{partial t}

Здесь rho - плотность зарядаvec j - плотность токаvarepsilon_0, mu_0, c - универсальные константы (уравнения здесь записаны в единицах СИ).

Здесь приведена наиболее фундаментальная и простая форма уравнений Максвелла - так называемые "уравнения для вакуума" (хотя, вопреки названию, они вполне применимы и для описания поведения электромагнитного поля в среде). Подробно о других формах записи уравнений Максвелла - см. основную статью.

Этих четырех уравнений вместе с пятым - уравнением силы Лоренца - в принципе достаточно, чтобы полностью описать классическую (то есть не квантовую) электродинамику, то есть они представляют ее полные законы. Для решения конкретных реальных задач с их помощью необходимы еще уравнения движения "материальных частиц" (в классической механике это законы Ньютона), а также зачастую дополнительная информация о конкретных свойствах физических тел и сред, участвующих в рассмотрении (их упругости, электропроводности, поляризуемости итд итп), а также о других силах, участвующих в задаче (например, о гравитации), однако вся эта информация уже не входит в рамки электродинамики как таковой, хотя и оказывается зачастую необходимой для построения замкнутой системы уравнений, позволяющих решить ту или иную конкретную задачу в целом.

 

«Материальные уравнения»

Такими дополнительными формулами или уравнениями (обычно не точными, а приближенными, зачастую всего лишь эмпирическими), которые не входят непосредственно в область электродинамики, но поневоле используются в ней ради решения конкретных практических задач, называемыми «материальными уравнениями», являются, в частности:


хиты: 20
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь