пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Закон полного тока. Магнитное поле внутри длинного соленоида

 

Датский физик X.Эрстед в начале 19 века определил главный в теории электромагнетизма экспериментальный факт, он заключается в следующим, протекание по проводникам электрического тока приводит к появлению в окружающем пространстве магнитного поля.

Этот факт предоставил возможность французскому выдающемуся ученому Лмперу выразить формулировкой закон, который на сегодняшний день имеет название закона полного тока. 

Проанализируем рисунок ниже, воображаемый контур L в пространстве, ограничивающий поверхность S

На этом контуре установим направление обхода так, чтобы движение с конца вектора вдоль контура элементарной площадки dS прослеживалось в направлении против часовой стрелки. 

Далее представим то, что поверхность S пронизывается отдельной системой токов, которая может нести как дискретный характер (к примеру, систему отдельных проводников), так и быть непрерывно распределенной (электронный поток может послужить этому примером). Не обуславливая тем временем физической природы данных токов, будем подразумевать для конкретности, что они распределены непрерывно в пространстве с кое-какой плотностью 

То теперь полный ток, пронизывающий контур, найдется в виде 

Закон полного тока говорит о том, что циркуляция по контуру L вектора напряженности магнитного поля, инициированного протеканием тока  равна полному току, то есть. 

Закон полного тока формулирует соотношение выше в интегральной форме. 

В том, чтобы связать плотность полного тока в данной гонке с напряженностью магнитного поля, то есть найти дифференциальную форму данного закона, надлежит употребить знаменитой теоремой Стикса из векторного анализа, которая говорит нам о том, что для каждого векторного поля А верно равенство 

Использовав крайнюю формулу и перестроив с её помощью 

будем располагать 

откуда получим из-за произвольности выбранного контура 

Формула выше несёт в себе закон полного тока в дифференциальной форме. Заметим, что при помощи закона полного тока в интегральной форме удается разрешить ряд задач, связанных по нахождению магнитного поля заданных токов. 

Ток смещения 

Известен из практики факт прохождения электрического переменного тока по цепи, включающий в себя конденсатор. Значительно важным тут приходится то, что ток протекает между обкладками по пространству, в котором нет каких-либо носителей электрического заряда. Вследствие чего можно предположить, что в данной области течёт некий ток, натура которого принципиально непохожа на натуры тока проводимости, ранее освоенного. Данный ток впервые был влит в электродинамику Максвеллом, а назвал он его током смещения. 

Мы видим цепь с конденсатором, представленную изображением ниже, в нём выделена замкнутая поверхность S, охватывающая одну из обкладок конденсатора.

Из закона Гаусса надлежит, что если, когда между обкладками имеется вакуум,

Ток в цепи в свою очередь, найдется следующим образом: 

Последнее выражение показывает, что величина 

обладает размерностью плотности тока, который и должен называться током смещения. 

Таким образом, плотность тока смещения в вакууме 

Предложением Максвелла было введение плотности тока смещения в правую часть закона полного тока наряду плотностью тока проводимости. Данное решение оказалось довольно значительным для электродинамики, поскольку при этом становилось возможным устанавить внутреннюю взаимосвязь магнитного и электрического поля. В действительности, к протеканию тока смещения, который, в свою очередь, вызывает появление магнитного поля, приводит изменение во времени электрического поля в какой-либо точке пространства.

 

Магн. поле соленоида

   Применим теорему о циркуляции вектора image011.png image423.png  для вычисления простейшего магнитного поля – бесконечно длинного соленоида, представляющего собой тонкий провод, намотанный плотно виток к витку на цилиндрический каркас (рис. 2.11).

image425.jpg

Рис. 2.11

      Соленоид можно представить в виде системы одинаковых круговых токов с общей прямой осью.

      Бесконечно длинный соленоид симметричен любой, перпендикулярной к его оси плоскости. Взятые попарно (рис. 2.12), симметричные относительно такой плоскости витки создают поле, в котором вектор image011.png  перпендикулярен плоскости витка, т.е. линии магнитной индукции имеют направление параллельное оси соленоида внутри и вне его.

image428.jpg

Рис. 2.12

      Из параллельности вектора image011.png  оси соленоида вытекает, что поле как внутри, так и вне соленоида должно быть однородным.

      Возьмём воображаемый прямоугольный контур 1–2–3–4–1 и разместим его в соленоиде, как показано на рисунке 2.13.

image431.jpg   

Рис. 2.13

image433.png

      Второй и четвёртый интегралы равны нулю, т.к. вектор image011.png  перпендикулярен направлению обхода, т.е image436.png .

      Возьмём участок 3–4 – на большом расстоянии от соленоида, где поле стремится к нулю; и пренебрежём третьим интегралом, тогда

image438.png

где image440.png  – магнитная индукция на участке  1–2 – внутри  соленоида,  image442.png  – магнитная проницаемость вещества.

      Если отрезок 1–2 внутри соленоида, контур охватывает ток:

image444.png

где n – число витков на единицу длины, I – ток в соленоиде (в проводнике).

      Тогда магнитная индукция внутри соленоида:

 

  image446.png,  (2.7.1)  

 

      Вне соленоида:

image448.png  и image450.png , т.е. image452.png .

Бесконечно длинный соленоид аналогичен плоскому конденсатору – и тут, и там поле однородно и сосредоточено внутри.

      Произведение nI – называется число ампер витков на метр.

      У конца полубесконечного соленоида, на его оси магнитная индукция равна:

 

  image454.png,  (2.7.2)  

 

      Практически, если длина соленоида много больше, чем его диаметр, формула (2.7.1) справедлива для точек вблизи середины, формула (2.7.2) для точек около конца.

      Если же катушка короткая, что обычно и бывает на практике, то магнитная индукция в любой точке А, лежащей на оси соленоида, направлена вдоль оси (по правилу буравчика) и численно равна алгебраической сумме индукций магнитных полей создаваемых в точке А всеми витками. В этом случае имеем:

·     В точке, лежащей на середине оси соленоида магнитное поле будет максимальным:

 

  image456.png,  (2.7.3)  

 

где L – длина соленоида, R – радиус витков.

·     В произвольной точке конечного соленоида (рис. 2.14) магнитную индукцию можно найти по формуле

 

  image458.png,  (2.7.4)  

 

image460.jpg

Рис. 2.14

      На рисунке 2.15 изображены силовые линии магнитного поля   image011.png :  а) металлического стержня; б) соленоида; в) железные опилки, рассыпанные на листе бумаги, помещенной над магнитом, стремятся вытянуться вдоль силовых линий; г) магнитные полюсы соленоида.

image463.jpg            image465.jpg


хиты: 41
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь