пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

35Особенности освоения арифметических действий сложения, вычитания, умножения, деления в пределах пяти концентров учащимися с нарушением интеллекта. Таблица сложения, умножения, случаи внетабличного умножения, разные виды умножения. Методика обучения устным и письменным арифметическим операциям четырех арифметических действий. Виды упражнений, их последовательность и усложнение при обучении арифметическим действиям.

Сложение и вычитание в пределах 20

Овладение вычислительными приемами сложения и вычитания в пределах 20 основано на хорошем знании сложения и вычитания в пределах 10, знании нумерации и состава чисел в пределах 20.

При изучении действий сложения и вычитания в пределах 20, как и при изучении соответствующих действий в пределах 10, большое значение имеют наглядность и практическая деятельность с пособиями самих учащихся. Поэтому все виды наглядг пособий, используемых при изучении нумерации, найдут приме ние и при изучении арифметических действий.

Однако по сравнению с изучением действий в пределах большое внимание уделяется использованию условно-предметп пособий: брусков и кубиков арифметического ящика, абаков, с тов.

Действия сложения и вычитания целесообразно изучать пар; лельно — после знакомства с определенным случаем сложен; изучать соответствующий случай вычитания в сопоставлении сложением, например: 10+7, 7+10, 17— 7 и 17—10. Учите должен постоянно обращать внимание на взаимосвязь этих дейс вий.

Во 2-м классе учащиеся должны знать название компонентом действий сложения и вычитания:

Покажем последовательность и приемы изучения сложения и втачитания в пределах 20.

I. Приемы сложения и вычитания, основанные на знаниях десятичного состава числа (10+3, 13—3, 13—10) и нумерации чисел в пределах 20 (16+1, 17-1).

При решении этих примеров закрепляются взаимосвязь сложения и вычитания, переместительное свойство сложения, названия компонентов и результатов действий. При этом учащиеся постепенно перестают пользоваться наглядными пособиями, но от них требуется пояснение действий.

I. Сложение и вычитание без перехода через десяток.

Выполнение действий основано на разложении компонентов на десятки и единицы: к двузначному числу прибавляется однозначное. Из дву-Ш'шого числа вычитается однозначное. Сначала нужно рассмотреть случаи, когда количество единиц в уммачном числе больше, чем во втором слагаемом (13+2, 1+3), и только потом включать случаи вида 11+6, 13+5, хотя 1Иемы их решения одинаковы,--5

Объяснение сопровождается использованием наглядных посо-й и подробной записью решения, например: 13+2. Первое сла-емое (13) состоит из 1 десятка и 3 единиц: 1 десяток палочек и 1е 3 палочки. Второе слагаемое 2. Прибавляем 2 палочки. 3 1лочки и 2 палочки — 5 палочек и 1 десяток палочек. Получить 1 десяток (палочек) и 5 единиц (палочек) — это число 15. шчит, 13+2=15. Подобным образом объясняются и случаи вы.

Важно постоянно подчеркивать, что складываются и вычитают-при решении таких примеров единицы. При записи примера 1ащиеся могут подчеркивать единицы: 14+2 = 16, 16—2 = 14. [ногда целесообразно единицы и десятки записывать разным цве-1М. На доске их можно обводить кружочком.

При решении примеров на сложение закрепляется умение учащихся пользоваться переместительным законом сложения: решение примера 2 + 14 проводится на основе решения примера 14+2. Полезно сопоставлять примеры на сложение и вычитание в пределах 20 с примерами на те же действия в пределах 10:

7+ 2= 9 9-2= 7 5+ 3= 8- 3=

2+ 7= 9 9-7= 2 3+...= 8-...=

17+ 2=19 19-2 = 17 17+ 2= 19- 2=

2+17=19 19-7=12 2+...= 19-...=

б) получение суммы 20 и вычитание однозначного числа из 20:

15+5

17+3

20-5

20-3

Решение примеров такого вида, особенно на вычитание, вызывает значительные трудности у многих умственно отсталых школьников. Учащихся смущает то, что при сложении единиц в разряде единиц получается нуль. Разложив 20 на два десятка и вычтя из одного десятка заданное количество единиц, дети забывают этот результат прибавить к десятку и получают ошибочный ответ: 20-3 = 7.

Использование наглядных пособий, актуализация имеющихся знаний и опора на них помогают преодолеть эти трудности. Необходимо повторить таблицу сложения и вычитания в пределах 10. дополнение однозначного числа до десятка, вычитание из 10.

Объяснение сложения не представляет ничего нового по сравне нию с объяснением решения примеров вида 13+2, кроме образова ния 1 десятка: 5+5=10 (или 1 дес.); 1 дес. + 1 дес.=2 дес.=20. ^"Рассмотрим пример на вычитание: 20—3. В числе 20 нуль единиц, а нужно вычесть 3 единицы. Занимаем 1 десяток, раздроб ляем его на 10 единиц и вычитаем 3 единицы, получаем 7 единиц. Всего остается 1 десяток и 7 единиц, или 17. Проведенное рассуж-

Ш дение записывается так: 20—3=17.

В случае затруднений при понимании и приема вычислений объяснение можно провести с помощью палочек, связанных н пучки. Например, 20 — это 2 десятка (берем 2 пучка палочек) и нуль единиц. Занимаем 1 десяток и раздробляем его на 10 единиц (развязываем пучок палочек). 10 единиц минус 3 единицы получается 7 единиц. Всего остается 1 десяток и 7 единиц, или 17.

Решаются примеры на перестановку слагаемых, составляются по образцу, по аналогии:

20-7 13+7

Действия сложения и вычитания сопоставляются: 15+5=20; 20-5=15;

в) вычитание из двузначного числа двузначного: 15—12; 20—15. х Решение примеров такого вида можно объяснить разными приемами:

1.      разложить уменьшаемое и вычитаемое на десятки и единицы и вычитать десятки из десятков, единицы из единиц;

2.      разложить вычитаемое на десяток и единицы. Вычитать из уменьшаемого десятки, а из полученного числа — единицы.

Учащимся трудно знакомиться сразу с двумя приемами и даже трудно последовательно знакомиться сначала с одним, а потом с другим приемом. Умственно отсталые школьники самостоятельно не могут выбрать, когда целесообразнее использовать тот или иной прием. Поэтому знакомство с двумя, приемами только запутывает их. Лучше отработать хорошо один прием вычислений и научить учащихся самостоятельно пользоваться им.

„Объяснение вычитания проводится на наглядных пособиях. / Например, 15—12. «Какое действие надо выполнить? Прочитайте пример. Назовите уменьшаемое, вычитаемое. Сколько знаков имеют эти числа? Как они называются? Сегодня будем учитьпычитать из двузначного числа двузначное. Из чего состоит ло 15? Отложим его на счетах. Из чего состоит вычитаемое Вычитать будем так: от 15 отнимем 1 десяток. Какое число !лось? От 5 единиц отнимем 2 единицы. Какое число получи, в остатке? Значит, 15—12=3».

Хналогично объясняется вычитание двузначного числа из 20 (рис. 10). Покажем на счетах последовательность вычитания дву-Н1.1чного числа из 20:

Целесообразно также использовать прием составления одного примера на сложение с тремя примерами: одного на сложение (перестановка слагаемых) и двух на вычитание. Необходимо сопоставлять компоненты этих примеров, подчеркивать их взаимосвязь (12+5, 5+12, 17-5, 17-12).

III. Сложение и вычитание с переходом через разряд представляет наибольшие трудности для учащихся школы VIII вида. Трудности связаны с тем, что сразу происходит актуализация ранее полученных знаний, их упорядочение и последовательное выполнение ряда логических операций. Чтобы сложить числа 7 и 5, нужно выполнить следующие операции:

1.      Разложить второе слагаемое (5) на два числа так, чтобы одно из них дополняло первое слагаемое до 10.

2.      Дополнить первое слагаемое до 10, т. е. прибавить к первому слагаемому (7) одно из чисел, на которое разложили второе слагаемое (т.е. 3). .

К полученному числу (10) прибавить оставшееся число (2)у Учащиеся затрудняются, во-первых, в разложении второго слагаемого, так как, чтобы его разложить, нужно произвести мысленно две операции: а) определить, сколько единиц недостает в н<-\ вом слагаемом до десятка; б) разложить второе слагаемое.

Вторая трудность заключается в том, чтобы удержать в пал число, которое осталось после дополнения первого слагаемой десятка, например: 7+5. Учащиеся дополнили 7 до 10, но помнят, сколько же нужно прибавить к 10.

Вычитание с переходом через десяток (12—5) тоже треб ряда операций:

1.      Уменьшаемое разложить на десяток и единицы.

2.      Вычитаемое разложить на два числа, одно из которых рапш числу единиц уменьшаемого.

3.      Вычесть единицы.

4.      Вычесть из десятка оставшееся число единиц.

Учащихся вспомогательной школы в основном затрудняет выполнение третьей и четвертой операций.

Требуется большая подготовительная работа, тщательный под бор материала от легкого к трудному, использование наглядности.

достаточное количество упражнений, которые бы помогли учлщимся овладеть навыками решения примеров данного вида. Подготовительная работа должна заключаться в повторении

а) таблицы сложения и вычитания в пределе 10; б) состава чисел первого десятка (всех возможных вариантов из двух чисел), на пример: 7=6+1, 7=1+6, 7=5+2, 7=2+5, 7=4+3, 7=3+4; в) дополнения чисел до десяти: 10=3+..., 10=5+..., 10=8+..., 10=3 + ..., 10=... + ... и т. д.; г) разложения двузначного числа на десятки и единицы; д) вычитания из десяти однозначных чисел; е) рассмотрения случаев вида 17—7, 15—5.

9+1 = 10 12-2=10

= 11 10-1= 9

-1 = 11 12-2-1=9

Эта подготовительная работа должна проводиться систематически из урока в урок, задолго до решения примеров данного вида.

Последовательность случаев может быть различной. Существует два варианта:

1. Первое слагаемое и уменьшаемое постоянны, а второе слагаемое и уменьшаемое увеличиваются на 1:

9+2 8+3 7+4 11-2 12-3 9+3 8+4 7+5 11-3 12-4 9+4 8+5 ... 11-4

7+9 9+9 8+9

2. Первое слагаемое и уменьшаемое меняются, увеличиваясь I, а второе слагаемое и вычитаемое постоянные: "•%.

8+3

7+4

6+5

7+6

11-3

11-4

9+3

8+4

7+5

8+6

12-3

12-4

9+4

8+5

9+6

13-4

9+5 и т. д.

Объяснение выполнения сложения и вычитания проводится с ^пользованием пособий и подробной записью. При выборе посопи необходимо учитывать, что учащиеся должны видеть необхо-шость добавления первого слагаемого до десятка при сложении разложении уменьшаемого на десятки и единицы при вычитали. Удобными пособиями являются бруски и кубики арифмети-^ского ящика, абак, счеты.

Сложим 8+3. Откладываем на пособии (абаке, полосах) пер-Ье слагаемое и добавляем его до десяти. Десять единиц заменяем Ьсятком. К десятку прибавляем оставшиеся единицы:

8+3=11

3=2+ 1

8+2=10

10+1 = 11

На этом этапе полезно решение примеров вида

8+2+5 8+7

8+7 8+2+5

Полезно также, особенно для наиболее слабых учащихся, ре-[ шение примеров с частичным использованием пособий, например: ' 7+5. Ученик берет 5 предметов (второе слагаемое 5) и рассуждает так: к 7 прибавить 3, будет 10 (отнимает от 5 предметов 3), осталось прибавить 2:10+2=12. В этом случае ученик помогает себе с помощью пособий разложить второе слагаемое и удержать в памяти оставшуюся часть.

Как вычесть из 11 число 2? На абаке откладываем 11. Надо вычесть 2. Вычитаем 1, осталось вычесть еще 1. 1 десяток заменяем 10 единицами. Из 10 единиц вычитаем 1. Остается 9.

11-2=

11-1 = 10

10-1= 9

11-2 =

11 = 10+ 1

11- 1 = 10

10- 1= 9

По аналогии со сложением рассматриваются случаи вы1 ния:

14-4-2 14-6

Учитель ставит вопросы: «Сколько единиц вычли сначг Сколько потом? Сколько всего единиц вычли?»

В дальнейшем учащиеся самостоятельно должны пояснять г говариванием громкой речью всё умственные действия.

Так же как и при сложении, можно позволить учащимся вычи таемое изображать на пособиях и убирать определенное количест во предметов при последовательном вычитании. (Иногда можно наблюдать, как учащиеся сами рисуют палочки на бумаге, а по мере вычитания зачеркивают их.) Например, 12—6. Откладывается 6 кругов (вычитаемое), и ученик рассуждает: «Сначала из двенадцати вычтем 2, будет 10 (убирает 2 круга), осталось вычесть 4: 10—4=6».

Так же как и во всех предыдущих случаях, соответствующие случаи сложения и вычитания необходимо сопоставлять.

Полезно сопоставлять ответы специально подобранных примеров целого столбика: решить и ответить на вопросы, почему ответы в примерах первого столбика увеличиваются, а в примерах второго уменьшаются.

9-3 9-4 9-5

9+3 9+4 9+5

В упражнения необходимо включать примеры с тремя компонентами: 8+7+3, 17—4—8, 5+9—6, а также примеры, одним из компонентов которых является нуль, например: 19—9, 20—0, 15—15 (нуль в ответе). Хорошо сравнить решение примеров, компонентами или результатами которых являются нуль и единица: 15-1, 15-15, 15-0, 15-14.

Примеры на сложение следует чередовать с примерами на вычитание. При решении сложных примеров необходимо выработать привычку анализировать предлагаемый пример. Учить школьников планировать мыслительные действия, развивать ориентировочную основу познавательной деятельности. Этому способствуют вопросы такого характера: «Сколько действий надо выполнить? Какие это действия?»

Следует шире использовать составление примеров по данному:

15-8 15-7

7+8=15 8+7

Так же как и при изучении действий в пределах 10, надо (предъявлять и такие примеры: 3—13, 12—15 — с целью выяс-'нить, возможно ли вычитание. При предъявлении пар примеров 5+15 и 5—15 (0+15 и 0—15) следует требовать объяснений, почему первый пример решить можно, а второй — нельзя. Подобные задания постепенно вырабатывают у учащихся привычку анализировать числа, прежде чем приступать к выполнению действий.

Для запоминания таблиц сложения и вычитания полезно решение примеров с неизвестным компонентом, составление нескольких примеров с данным ответом.

Таблицы сложения и вычитания заучиваются наизусть.

СЛОЖЕНИЕ И ВЫЧИТАНИЕ В ПРЕДЕЛАХ 100

При обучении сложению и вычитанию в пределах 100 собл! ются все требования, которые предъявляются к обучению вьн нению действий в пределах 20.

Многие трудности, которые испытывают школьники с нару нием интеллекта при выполнении действий сложения и вычита в пределах 20, не снимаются и при выполнении этих же деист! в пределах 100. Как показывают опыт и специальные йсследс ния по-прежнему большие затруднения учащиеся испытывают I выполнении действия вычитания. Наибольшее количество оши( возникает при решении примеров на сложение и вычитание переходом через разряд. Характерная ошибка при вычитании, единиц вычитаемого вычитают единицы уменьшаемого. Напримг, 35—17=22. Наблюдается также тенденция замены одного деж ' вия другим. Например: 64—16=80, 17+2=15 (вместо вычитании выполнено сложение и наоборот). При выполнении действий < двузначными числами учащиеся часто принимают во вниманш только единицы одного разряда, единицы другого разряда (первого или второго компонентов) переписывают без изменении (36+11=46, 85—24=64). Допускаются и такие ошибки: учащиеся складывают или вычитают, не обращая внимания на разряды: еди ницы складывают с десятками (37+2=57, 38—20=36), из меньше го числа вычитают большее (17—38=21), при решении сложных примеров выполняют только одно действие (12+14—8=26).

Характерно, что учащиеся школы VIII вида долгое время не овладевают рациональными приемами вычисления, задерживаясь на приемах пересчитывания конкретных предметов, присчитывания по единице.

Причины ошибок заключаются в недостаточно твердом знании таблиц сложения и вычитания в пределах 10 и 20 (39—7=31, 42+7=48), в недостаточно твердом знании и понимании позиционного значения цифр в числе или в неумении использовать свои знания на практике, а также в особенностях мышления школьников с интеллектуальным недоразвитием.

Последовательность изучения действий сложения и вычитания обусловлена нарастанием степени трудности при рассмотрении различных случаев.

1.      Сложение и вычитание круглых десятков (30+20, 50—20, решение основано на знании нумерации круглых десятков).

2.      Сложение и вычитание без перехода через разряд.

3.      Сложение двузначного числа с однозначным, когда в сумме йучаются круглые десятки. Вычитание из круглых десятков Нозначного и двузначного числа:

40-5=

40-23=40-20-3

40-33=40-30-3

4.      Сложение и вычитание с переходом через разряд.

35+ 7

7+35

35+27

Г Все действия с примерами 1, 2 и 3-й групп выполняются прие-»ами устных вычислений, т. е. вычисления надо начинать с единиц высших разрядов (десятков). Запись примеров производится в строчку. Приемы вычислений основываются на знании учащимися нумерации, десятичного состава чисел, таблиц сложения и вычитания в пределах 10.

Действия сложения и вычитания изучаются параллельно. Каждый случай сложения сопоставляется с соответствующим случаем вычитания, отмечается их сходство и различие.

Такие случаи сложения, как 2+34, 5+45 и др., не рассматриваются самостоятельно, а решаются путем перестановки слагаемых и рассматриваются совместно с соответствующими случаями: 34+2, 45+5.

Объяснение каждого нового случая сложения и вычитания проводится на наглядных пособиях и дидактическом материале, с которым работают все ученики класса.

Рассмотрим приемы выполнения действий сложения и вычитания в пределах 100:

1) 30+20= 50-30=

Рассуждения проводятся так: 30 — это 3 десятка (3 пучка палочек). 20 — это 2 десятка (2 пучка палочек). К 3 пучкам палочек прибавим 2 пучка, всего получили 5 пучков палочек, или 5 десятков. 5 десятков — это 50. Значит, 30+20=50.

Такие же рассуждения проводятся и при вычитании круг/и.г десятков.

Подробная запись на первых порах позволяет закрепить пос и довательность рассуждений:

30+20=50

50-20=30

5 дес.-2 дес.=3 дес.=

3 дес.+2 дес.=50 дес.=50 дс1..=ои

К решению примеров привлекаются все пособия, которые и пользуются при изучении нумерации. Действия производятся о6зательно на счетах.

2) 30+26 26+30

Объяснение решения примеров данного вида проводится также на пособиях (абак, арифметический ящик, счеты). Полезно пока зать учащимся подробную запись выполнения действия:

56-30

26=20+ 6 30+20=50 50+ 6=56

30+26

56=50+ 6 50-30=20 20+ 6=26

или 30+26=30+20+6=50+6=56.

Этой записью учитель пользуется только при объяснении. Ученикам же нужно показать короткую форму записи, но требовать устного комментирования при выполнении действий, при записи — подчеркивания десятков:

Указанные выше случаи сложения, а также вычитания решаются ответственно одинаковыми приемами. Однако по трудности они не-•юзначны. Для школьника с нарушением интеллекта значительно 1уднее к меньшему числу прибавить большее. (2+7)-9—7 — это иболее трудный случай табличного вычитания. Все это говорит о ом, что, соблюдая требование постепенности нарастания трудностей (фи решении примеров, необходимо учитывать не только приемы вы-(шслений, но и числа, над которыми выполняются действия. Объяснение:

«В числе 45 — 4 десятка и 5 единиц. Отложим число на абаке. [Прибавим 2 единицы. Получим 4 десятка и 7 единиц, или число 47».

57-12

45+12

12=10+ 2 57-10=47 47- 2=45

12=10+ 2 45+10=55 55+ 2=57

или

45+12=45+10+2 57-12=57-10-2

Такой прием целесообразен потому, что при вычитании с переходом через разряд применение приема разложения на разрядные слагаемые двух компонентов приведет к вычитанию из меньшего числа единиц уменьшаемого большего числа единиц вычитаемого (43-17, 43=40+3, 17=10+7, 40-10, 3-7).

56-30=26

30+26=56 26+30=56

Полезно выполнять действия на счетах.

Следует отметить, что некоторые учащиеся долгое время не могут научиться проводить рассуждения при решении примеров, но с их решением на счетах легко справляются, не смешивают разряды. Этим ученикам можно разрешать пользоваться счетами.

Для большей наглядности, лучшего понимания позиционного значения цифр в числе запись единиц и десятков на доске и в тетрадях некоторое время можно делать разными цветами. Это важ*ю для тех учащихся, которые плохо различают разряды.

3) 45+2 42+7 

47-2 49-7 

4) 45+12 42+17 

57-12 59-17 57-52 

45=40+ 5 
5+ 5=10 
40+10=50 

25=20+ 5 45+20=65 
65+ 5=70 

50=40+10
10- 5= 5
40+ 5=45 

25=20+ 5 
70-20=50 
50- 5=45 

4) 45+ 5 45+25

45+5

50- 5 70-25, 50+45

50-5 _ 70-25

45+25

Рассуждения при решении этих примеров на сложение ничем не отличаются от рассуждений при решении примеров на сложение двух предыдущих видов, хотя последние и более трудны для учащихся.

При рассмотрении случаев вида 50—5 надо указать на то, что необходимо занять один десяток, так как в числе 50 число единиц равно 0, раздробить десяток в единицы, от десяти отнять 5, а оставшиеся десятки сложить с разностью.

Для удобства и большей четкости изложения вычислительна приемов мы рассмотрели каждый новый случай изолированно. 1 процессе обучения учащихся устным вычислительным прием! необходимо каждый новый случай сложения или вычитания ря сматривать в неразрывной связи с предыдущими, постетч включая новые знания в уже имеющиеся, постоянно их сопост ляя. Например, 45+2, 45+5, 45+32, 45+35. Сопоставить примеры, найти общее и различное. Составить примеры такого вида.

Такого рода задания позволят увидеть сходство и различие примерах, заставят учащихся думать, рассматривать каждый он чай сложения не изолированно, а в связи и взаимообусловленном ти. Это позволит выработать обобщенный способ устных вычислс ний. (Решить, сравнить вычисления и составить похожие приме ры: 40-6, 40-26, 40-36, 40-30.)

4) Сложение и вычитание с переходом через разряд (2-я труп па примеров) выполняются приемами письменных вычислений т. е. вычисления начинаются с единиц низших разрядов (с еди ниц), за исключением деления, а запись дается в столбик.

Учащиеся знакомятся с записью и алгоритмами письменного сложения и вычитания и учатся комментировать свою деятельность. Необходимо сопоставлять различные случаи сначала сложения, затем вычитания, устанавливать черты сходства и различия, включать учащихся в процесс составления аналогичных примеров, учить их рассуждать. Только подобные приемы могут дать коррек-ционный эффект.

Когда учащиеся научатся выполнять действия сложения и вычитания с переходом через разряд в столбик, их знакомят с выполнением этих действий приемами устных вычислений.

Например:

38+ 3

41-3

3+38

41-9

38+ 9

41-23

41-33

Объяснение обычно проводится на абаке, палочках, брусках или кубиках арифметического ящика, счетах.

штель предлагает прочитать пример, отложить на абаке 38, предварительно выяснив его десятичный состав. Снача-I единицам нужно прибавить 3 единицы: число 8 добавляется :ятка, т. е. прибавляются 2 единицы; образовавшиеся десять иииц заменяются одним десятком, получается 4 десятка. К 4 Гнткам прибавляется еще 1 единица.

При вычитании из двузначного числа однозначного с перехо-через разряд сначала вычитаются все единицы уменьшаемого, I затем из круглых десятков вычитаются оставшиеся единицы Считаемого.

запись. 41-3=38 41-1=40 40-2=38

Подробная 38+3=41 38+2=40 40+1=41

Как при сложении, так и при вычитании надо разложить второе лагаемое или уменьшаемое на два числа. При сложении второе лагаемое раскладывается на такие два числа, чтобы первое допол-яло число единиц двузначного числа до круглого десятка.

При вычитании вычитаемое раскладывается на такие два Числа, чтобы одно было равно числу единиц уменьшаемого, т. е., I чтобы при вычитании получилось круглое число.

При выполнении действий трудность для учащихся представляет умение правильно разложить число, выполнить последовательность нужных операций, запомнить и прибавить или вычесть оставшиеся единицы.

Например, выполняя действие 54+8, ученик может правильно дополнить 54 до 60. Затруднение вызывает разложение числа 8 на 6 и 2. Число 6 ученик использует, чтобы получить круглое число, но сколько еще единиц осталось прибавить к круглым десяткам (к 60), он забывает.

Учитывая это, необходимо, прежде чем рассматривать случаи данного вида, еще и еще раз повторить состав чисел первого десятка, провести упражнения на дополнение чисел до круглых десятков, например: «Сколько единиц не хватает до 50 в числах 42, 45, 48, 43, 4? Какое число нужно прибавить к числу 78, чтобы получить 80?» Надо рассматривать случаи вида 37+3+2=40+2=42 и добиваться ответа на вопрос: «Сколько всего единиц прибавили к числу (37)?»

43-3-2=40-2=38

«Сколько всего единиц вычли из числа 43?» Значит, 43—5=я Для некоторых учащихся школы VIII вида при решении тал вида примеров используется частичная наглядность, наприм 38+7. Ученик откладывает на счетах 7 косточек или рисует палочек и рассуждает так: «К 38 прибавлю 2, получится 40 (и палочек 2 палочки убирает или зачеркивает), теперь к 40 приб лю еще 5 палочек».

Еще пример: 45—8. Ученик откладывает 8 палочек и рассужу ет так: «Сначала от 45 отнимем 5, будет 40 (убирает 5 палоче осталось отнять 3. От сорока отнять 3, останется 37. 45—8=3?

38+24

54-18

Решение примеров данного вида базируется на уже извести учащимся приемах решения:

54-18

18=10+ 8

54-10=44

44- 8=36

38+24

24=20+ 4

38+20=58

58+ 4=62

Решение этих примеров основывается на разложении второ! слагаемого и вычитаемого на разрядные слагаемые и последовател ном сложении и вычитании их из первого компонента действия.

Школьники с нарушением интеллекта из-за неустойчивое! внимания, неумения сосредоточиться нередко допускают ошибк такого характера: прибавят или вычтут десятки, но забудут прибг вить или вычесть единицы. I

Твердо не усвоив приема вычислений, позиционного значени цифр в числе, ученики складывают десятки с единицами, вычитг ют из единиц уменьшаемого десятки вычитаемого: 54—18=43. I

Сложение и вычитание с переходом через разряд учащиес^ должны уметь выполнять на счетах.

160

Например: 56+27. Сначала отложим число 56. Прибавим 20. Получилось 76. Прибавим 7. 76 дополним до 80, заменим 10 единиц одним десятком, прибавим к 8 десяткам еще 3 единицы

Выполним вычитание на счетах (рис. 11): 41—24.

Чтобы учащиеся приобрели умения и навыки в решении приме-на сложение и вычитание с переходом через разряд, надо полнить достаточно много упражнений. Примеры можно давать

с двумя, и с тремя компонентами, чередуя действия сложения и пычитания. Решаются и такие примеры: 48+(39—30).

Расположение материала с постепенно нарастающей степенью Фудности позволяет учащимся овладеть необходимыми приемами при выполнении действий сложения и вычитания. Успех овладения вычислительными приемами во многом зависит от активности лмих учащихся.

В школе VIII вида всегда будет группа детей, которым оказываем ся недоступным овладение устным вычислительным приемом при Решении примеров с переходом через разряд (27+38, 65—28). Такие учащиеся будут решать примеры приемами письменных вычислений (в столбик).

При изучении сотни закрепляется название компонентов и результатов действий сложения и вычитания. Чтобы названия компонентов вошли в активный словарь учащихся, необходимо при чтении выражений пользоваться этими названиями, например: «Первое слагаемое 45, второе слагаемое 30. Найти сумму. Уменьшаемое 80, вычитаемое 32. Найти разность. Найти сумму трех чисел: 30, 18, 42. Как называются числа при сложении? От суммы чисел 20 и 35 отнять 40» и т. д.

При изучении сотни учащиеся знакомятся с нахождением неизвестных компонентов сложения и вычитания.

При изучении действий сложения и вычитания в пределах 10 и 20 учащиеся решали примеры с неизвестными компонентами, используя прием подбора, например: П+3=10, 4+П=7, П—4=6, 10-П=4.

При изучении сотни неизвестный компонент обозначается буквой и учащиеся знакомятся с правилом нахождения неизвестных компонентов.

Прежде чем познакомить учащихся с решением примеров, содержащих неизвестный компонент, надо создать ситуацию, придумать такую жизненно-практическую задачу, которая дала бы учащимся возможность понять, что по двум известным компонентам и одному неизвестному можно найти этот третий неизвестный компонент.

Например: «В коробке лежит несколько карандашей, туда но. жили еще 3 карандаша. В коробке стало 8 карандашей. Скол) карандашей было в коробке?»

Эту задачу следует драматизировать. Ученик берет коробку карандашами (количество карандашей в ней неизвестно), кла; туда 3 карандаша. Пересчитывает все карандаши в коробке. I оказывается 8. Учитель предлагает количество карандашей, ко1 рое было (т. е. неизвестное), обозначить буквой х. и записа х+3=8. Если от 8 карандашей отнимем 3 карандаша, котор добавили, то останется 5 карандашей: *+3=8, х=8—3, х=5.

Проверка. 5+3=8 8=8

После решения еще нескольких задач с реальными предметами можно сделать вывод: «Чтобы найти неизвестное слагаемо! нужно из суммы вычесть известное слагаемое».

Нахождение неизвестного уменьшаемого также лучше всей как показывает опыт, показать на решении жизненно-практиче кой задачи, например: «В корзине лежит несколько грибов (х), г нее взяли 5 грибов (берем), осталось в корзине 4 гриба (сосчит.1 ли). Сколько грибов было в корзине?»

Задача обыгрывается. Обозначим грибы, которые были в корзи не, буквой х и запишем: х—5=4. «Каким действием можно уз нать, сколько грибов было?» (Сложением.)

Проверка. 9—5=4 4=4

ТАБЛИЧНОЕ ДЕЛЕНИЕ В ПРЕДЕЛАХ 100

Составлению таблиц деления в пределах 100 предшествует повторение таблиц деления в пределах 20, сопоставлению табли цы умножения и соответствующей таблицы деления. Учащиеся наблюдают взаимную связь этих арифметических действий. Уча щиеся уже могут по примеру на умножение составить два приме ра на деление: 3x4=12; 12:3=4, 12:4=3 в пределах 20.

Последующие таблицы деления составляются уже с опорой на установленную взаимосвязь между действиями умножения и деления. Только для отдельных учащихся, наиболее отсталых в умственном развитии, приходится использовать прием деления предметных совокупностей на равные части и в дальнейшем.

На основании установления взаимосвязи между умножением и делением учитель знакомит учащихся с проверкой деления умножением. Учащиеся практически, без заучивания правил, должны понять, что деление можно проверить умножением так: деление выполнено правильно, если при умножении частного на делитель в ответе получится делимое. Например: 15:3=5, 5x3 = 15.

Пониманию взаимосвязи между умножением и делением способствует решение и составление пар, а также четверок примеров такого вида:

В школе VIII вида, несмотря на проводимую работу по установ-Нию взаимосвязи между действиями умножения и деления, не-Торые умственно отсталые школьники так и не осмысливают у связь глубоко, а поэтому решают и даже составляют пары и Тнерки примеров механически. Все это приводит к необходимос заучивать не только таблицу умножения, но и таблицу деле я.

Установка на запоминание должна быть дана учащимся сразу. 1я лучшего запоминания таблицы учащимся нужно постоянно называть, как составляются примеры одной таблицы, какая тут кономерность: таблица умножения составляется по постоянному рвому множителю, второй множитель увеличивается в каждой следующей строчке на 1, произведение увеличивается на число .иниц первого множителя. Полезно предлагать учащимся зада-ш на составление следующего или предыдущего примеров из блицы: 5-4=20, составить следующий пример: 5-5=25; срав-ть эти примеры. Вопросы могут быть следующими: на какое [ело отличаются произведения и почему? Какой ответ у предыду-его примера?

Аналогичные таблички учащиеся должны изготовить на уроке труда из плотной бумаги. Эти таблички с названием всех компонентов и результатов действий учащиеся хранят в тетрадях по математике и постоянно с ними работают.

Задания могут быть такого типа: по примеру на умножение составить один пример на деление, по примеру на умножение составить один пример на умножение и два примера на деление:

Аналогичные таблички учащиеся должны изготовить на уроке труда из плотной бумаги. Эти таблички с названием всех компонентов и результатов действий учащиеся хранят в тетрадях по математике и постоянно с ними работают. Полезны упражнения:

Делимое 

12 

 

35 

Делитель 

 

Частное 

 

21 

1.      Составить примеры по таблице и решить их.

Первый 

п 

множитель 

 

 

 

Второй 

 

Ч 

множитель 

 

 

 

Произведение 

 

15 

21 

1.      В примере 40 : 5=8 назвать делимое, частное, делитель, примере 3x6=18 назвать множители, произведение.

2.      Делимое 32, делитель 4. Найти частное. Сомножители 3 и Найти произведение.

3.      Найти частное двух чисел: 12 и 6.

4.      Что неизвестно в примерах на деление:

Заполнить пустую клетку в примере Пх8=24 нужным числом.

Умножение 1 на 1 и деление на 1 выделяются особо в программе, так как эти случаи не вытекают из определения умножения. С этими случаями умножения и деления учащиеся знакомятся после изучения всей таблицы умножения и деления.

По возможности знакомство с этими особыми случаями умножения надо провести наглядно, не ограничиваясь просто заучиванием правил.

В работе с единицей рассматриваются два случая. Умножение по 1. Этот вид умножения лучше начинать с умножения 1 на большие числа, например: 1x6 — это 1 + 1 + 1 + 1 + 1 + 1=6, 1 + 1 + 1 + 1 + 1 = 1x5, 1x2=2. Если 1 умножить на число, то получится это же число. Этот вывод можно сделать и на основе решения задачи жизненно-практического содержания. Например, учитель говорит и показывает: «По 1 карандашу взяли 4 ученика. Сколько карандашей они взяли?»

Умножение на 1. Это особый случай умножения. Учитель сообщает, что 5 • 1 нельзя рассматривать как сумму одинаковых слагаемых, так как тут нет слагаемых. Используем переместитель-ное свойство умножения: если 1 • 5=5, то 5 • 1 =5. Учащиеся заучивают правило:

Если один из множителей единица, то произведение равно второму множителю. 178

Целение на 1 рассматривается на основе знания взаимоотноше-I между умножением и делением: 1«3=3, следовательно 1 =3.

Показ деления на конкретных примерах лучше усваивается штами, например: «3 конфеты разделить на один (1), значит, . их одному человеку. Сколько конфет получит этот человек?» Необходимо сопоставлять решение примеров вида

4:1 4:4

Умножение нуля, умножение на нуль и деление нуля

На знания смысла умножения как сложения равных слагаемых можно записать: 0x5=0+0+0+0+0=0, значит, 0x5=0.

При умножении числа на 0 следует сделать ту же оговорку, •но и при умножении числа на единицу. Даем правило: при умножении любого числа на 0 произведение равно 0. Далее показываем, что переместительное свойство умножения здесь можно применить так: если 5x0=0, а 0x5=0, то 5x0=0x5.

Учащимся предлагается заучить правило:

Если один из множителей нуль, то произведение равно нулю (0).

Деление нуля рассматривается на основе взаимосвязи умножения и деления: 0x3=0, отсюда 0:3=0.

Однако понятнее для учащихся оказывается ссылка на определенную жизненную ситуацию: «У меня нет ни одной конфеты, т. е. нуль конфет; я буду делить нуль на трех человек. Сколько конфет получит каждый?» Такие примеры сразу дают учащимся возможность осознать, что при делении нуля на любое число в частном получается нуль.

Невозможность деления на нуль дается на основе правила.

В примерах, где компонентами действий является 0 или 1, учащиеся допускают много ошибок. Поэтому полезны упражнения, способствующие дифференциации этих понятий. Это примеры вида

7x7 7:7 7+7 7-7

7:7 7-7 7X1 7:1

0:4 0x4 0+4 4-0

5-0 5-1 5+0 5+1

0:4 4:1 4:4 4-4

Деление по содержанию в школе VIII вида рассматривается лишь при решении арифметических задач после изучения таблицы умножения и деления на равные части. Примеров на деление по содержанию не дается.

Деление с остатком вводится после изучения табличного д ления (4-й класс). На деление с остатком дети допускают мно ошибок. Они либо не записывают остаток (8:3=2), либо приба: ляют его к частному (8:3=4 — к частному прибавили остаток 2 либо получают остаток больше делителя (8:3=1) (ост. 5).

Перед решением примеров на деление с остатком полезно, кА показывает опыт, выполнять подготовительные упражнени» 3x4+1. Понятие о делении с остатком необходимо дать путе! создания определенной жизненной ситуации, в которой учащиес! убеждаются, что нередко при делении получается остаток. Например, учитель вызывает двух учеников, а третьего просит разделить между двумя учениками поровну сначала 2 тетради, потом ; 4, 5 тетрадей. Деление конкретных предметов сопровождается записью примеров и комментированием: 2:2=1, 3 разделить на две равные части (каждый ученик получил по одной тетради, I одна тетрадь осталась). Учитель показывает, как записать примеры на деление с остатком: 3:2 = 1 (ост. 1); 4:2=2, 5:2=2 (ост. 1).

Необходимо показать, как сделать подбор частного. Например, надо 7:3, а 7 на 3 не делится. Делим на 3 число, на 1 меньшее 7, т. е. отнимаем 1 от 7 единиц, получаем 6; 6:3=2, остаток 1.

Учитель знакомит учащихся и с проверкой деления с остатком

5:2=2 (ост. 1).

Проверка. 2x2+1=4+1=5.

Обязательно нужно не только говорить, что остаток должен быть меньше делителя, но и каждый раз спрашивать, какой остаток получился, и сравнивать его с делителем.

При решении примеров на деление с остатком учитель подбирает примеры для решения в такой последовательности: сначала остаток должен быть равен 1, затем 2, 3, а потом уже любому числу:

3:2=1 (ост. 1)

5:2=2 (ост. 1)

7:4=1 (ост. 3)

4:3=1 (ост. 1)

7:3=2 (ост. 1)

11:4=2 (ост. 3)

Предлагаются упражнения: в ряду чисел 5, 6, 7, 8, 9, 10, 11, 12 подчеркнуть те, которые делятся на 3 без остатка. Под числами, которые не делятся на 3 (или любое другое данное число), записать остаток.

Цель таких упражнений заключается в том, чтобы учащиеся видели остаток, сравнивали его с делителем и убеждались в том, что остаток меньше делителя. 180

Изучение действий в пределах 100 заканчивается знакомством правилом порядка действий. Учащиеся узнают, что если в при-"•ре есть действия сложение, вычитание, умножение и деление, сначала выполняются умножение и деление (это действия пер-1Н ступени), а потом по порядку сложение и вычитание (это иствия второй ступени),

Пример:

24-27:3+18

ВНЕТАБЛИЧНОЕ УМНОЖЕНИЕ И ДЕЛЕНИЕ

После изучения табличного умножения и деления учащиеся знакомятся с умножением круглых десятков и двузначных чисел на однозначное число, а также с умножением однозначных чисел на круглые десятки и двузначные числа, когда произведение не превышает 100 (20x3, 15-3, 4x20, 5-13), и соответствующими им случаями деления (60:3, 39:3, 80:20, 65:13). Все эти случаи умножения и деления относятся к внетабличному умножению и делению. Различные случаи внетабличного умножения и деления неодинаковы по сложности и поэтому изучаются в 5—6-х классах школы VIII вида. Так, умножение и деление круглых десятков на однозначное число (30x2, 60:2) и двузначного числа на однозначное без перехода через разряд (12x3, 36:3) изучаются в 4-м классе. Случаи умножения и деления двузначного числа на однозначное с переходом через разряд (15 «2, 30:2, 18x3, 54:3) и деления на круглые десятки (40:20) изучаются в 6-м классе. Случаи умножения и деления на двузначное число (3-25, 75:25) изучаются в 7-м классе:

а) умножение и деление круглых десятков на однозначное число (20x3).

Умножение круглых десятков на однозначное число сводится к табличному умножению. Например: 20 — это 2 десятка. 2 дес.хЗ=6 дес.=60. Пример можно проиллюстрировать с помощью брусков арифметического ящика и счетов.

Деление круглых десятков также сводится к табличным случаям деления: 60:3=? 60 — это 6 десятков. 6 дес.:3=2 дес.=20;

б) умножение и деление двузначных чисел на однозначное без перехода через разряд.

В случаях 12x3 и 36:3 используется прием разложения перв го множителя и делимого на разрядные слагаемые, последовате; ного умножения или деления каждого слагаемого и сложен» результатов:

Составьте 10—12 упражнений на закрепление табличного умножения .ления).

6. Выпишите из учебника математики для 4-го класса 8—10 упражнений закрепление таблицы умножения (деления), направленных на развитие мяти учащихся.

12x3=36 12=10+ 2 Юх 3=30 2 . 3= 6 30+ 6=36

36:3=12 36=30+ 6 30 : 3 = 10 6 : 3= 2 10+ 2 = 12

в) умножение и деление на круглые десятки.

Умножение однозначного числа на круглые десятки объясняется на основе переместительного закона умножения: 3* 20=20-1 20x3=60, значит, 3-20=60. Решение 60:20 рассматривается каделение по содержанию: 6 дес.:2 дес.=3. (Сколько раз 2 десяти содержится в 6 десятках?)

Со случаями внетабличного умножения и деления с переходо через разряд учащихся знакомят приемами письменных вычислиний:

15X4=60 

60 : 4=15 

Х15 

6014 

4 ГПГ 

60 

20 " 

 

20 

Деление двузначного числа на двузначное:

17

51 "51

51:17=3;

ОБУЧЕНИЕ ТАБЛИЧНОМУ УМНОЖЕНИЮ В ПРЕДЕЛАХ 100

В 3-м классе повторяется табличное умножение в пределах 1'0 и заканчивается изучение всего табличного умножения и делении По-прежнему много внимания уделяется наглядной основе и счету равными группами и числами. Однако результат умножения к примерах, где второй множитель меньше первого (например, 6x2, 6x3, 6x4, 6x5), надо записывать на основе знания учащимися переместительного закона умножения. Составив ответы, обяза тельно надо дать на замену действия умножения сложением ран ных слагаемых. Ответы от сложения соответствующих им приме ров на умножение сравниваются. Время от времени можно пред лагать учащимся составить рисунок к примеру на умножение.

Надо добиваться того, чтобы ученики могли получить забытый ответ к примеру на умножение, заменив умножение сложением равных слагаемых или прибавив к известному предыдущему ответу число, которое умножаем. Так, если ученику дан пример 6x9 и он забыл ответ, однако помнит, что 6x6=36, тогда к 36 он прибавляет по 6: 36+6=42 (это 6x7), 42+6=48 (это 6x8), 48+6=54 (это 6x9); значит, 6x9=54.

Приведем фрагмент урока, на котором учащиеся знакомятся с таблицей умножения числа 6.

«Посчитаем шестерками до 60 в прямом порядке. Посчитаем, отсчитаем от 60 по 6.

Знаете ли вы, что посуду группируют в сервизы по 6 предметов? Например, столовый сервиз состоит из 6 глубоких тарелок, 6 мелких больших и 6 мелких маленьких тарелок. Так же продают наборы столовых приборов: 6 ножей, 6 вилок, 6 ложек. Сколько в столовом сервизе тарелок, если в нем 6 тарелок больших и 6 маленьких? (Показ рисунка с тарелками по 6 в ряд.) Каким действием это можно узнать? (6+6=12.)

Вспомним, сколько будет, если 3x6. Поменяем местами сомножители: 6x3=18.

I Продолжим составление таблицы дальше: 6x4? Как можно Лиги ответ к этому примеру? Поменяем местами множители: iv I, =24, значит, 6x4=24. Проверим, правильно ли мы нашли и* I. Каким действием можно заменить умножение? Запишем:

I =6+6+6+6=24.

Решим пример 6x5 сначала перестановкой сомножителей: К 5=5x6, 5x6=30, значит, 6x5=30. Заменим действие умно-гния сложением: 6x5=6+6+6+6+6=30». I Па фрагменте данного урока показано, как переместительный 1кон умножения использовался при знакомстве учащихся с новы-И случаями умножения.

В тех случаях, когда второй множитель равен или больше _ервого (6x6, 6x7, 6x8, 6x9, 6x10), для нахождения ответов ельзя использовать прием, основанный на знании переместитель-,р1ого закона умножения. Ответ отыскивается с помощью составления таблицы сложения равных слагаемых с опорой на счет равных групп предметов: 6x6=36

С распределительным законом умножения учащиеся школы VIII вида не знакомятся.

Учитель должен обратить внимание на то, что ответ каждого последующего примера может быть получен из предыдущего путем прибавления 6 (единиц множимого).

При составлении таблиц умножения учим учащихся опираться на использование переместительного свойства умножения, а также на наблюдение за изменением произведений в строчках таблиц умножения: произведение, полученное в последующей строчке (например, 5x6=30) равно произведению в предыдумн1 строчке (5x5=25) плюс число, которое умножается (5). Прош можно произведение двух чисел записать в обобщенном виде:

ахЬ=л-'(Ь-1)+а.

С помощью вышеназванных свойств табличного умножения со ставляются таблицы умножения чисел 7, 8, 9.

ОБУЧЕНИЕ ТАБЛИЧНОМУ УМНОЖЕНИЮ И ДЕЛЕНИЮ В ПРЕДЕЛАХ 20

Впервые в 3-м классе учащиеся школы VIII вида знакомятся < новыми арифметическими действиями умножением и делением, составляют, заучивают таблицы умножения и деления чисел 2, .1, 4, 5 с ответами, не превышающими число 20. Лучшему осознании' смысла действия умножения способствует подготовительная р та: счет равными группами предметов, а также счет по 2, 3, до 20, С этой целью учитель готовит наглядные пособия, разда ный Материал. Такими пособиями служат учебные принадлежи > ти, природный материал, игрушки, изображения предметов в вю<' трафаретов, разнообразные рисунки и т. д.

Причем желательно объединять предметы, которые встречай ся группами в жизненных условиях. Например, соединять варе ки, перчатки, носки в пары, яйца — в десятки, пальцы рук в группу по 5, колеса автомобиля — по 4, ножки табуретки — по 3 и т. д.

Например, учитель говорит:

— Ребята, вы будете кататься на лыжах. Каждому из вас нужно надеть варежки. Сколько варежек нужно одному ученику? Постройтесь у доски (учитель вызывает 5 человек). Пусть каждый возьмет по паре варежек. Считаем вместе, хором, сколько всего варежек взяли ученики: 2, 4, 6, 8, 10.

— За каждой партой в нашем классе сидят по 2 ученика. Пересчитаем всех учеников в классе. Чтобы быстрее сосчитать, будем считать по 2.

— Нужно сложить в корзину все яблоки и сосчитать, сколько яблок в корзине. Чтобы быстро сосчитать, будем брать сразу по 2 яблока и считать: 2, 4, 6, .... 18, 20. Сколько всего яблок? Сколько раз взяли по 2 яблока?

На этот вопрос ученики не могут ответить. Поэтому при счете парами других предметов надо, чтобы один ученик считал по 2, а другой — сколько раз взяли по два. К доске выходят 2 ученика. Первый ученик берет из коробки по 2 карандаша и считает: 2, 4, .... а второй считает, сколько раз первый ученик взял по 2 карандаша.

Счет ведется не только по 2, но и другими равными числовыми группами. Например, учитель ставит несколько игрушечных машин и дает детям задание: «Сосчитаем, сколько колес у этих машин. Сколько колес у одной машины? Как будем считать, чтобы быстро сосчитать колеса у всех машин: по 1 или по 4?» «4, 8, 164», — считают дети. «Если будет еще одна машина, то сколько пес еще надо прибавить?» Следует спросить у детей, какие едметы удобно считать парами, по 5, по 10. Если ученики не дут ответа на этот вопрос, то учитель должен ответить сам.

Ученикам предлагается задача:

«Девочка собрала цветы и поставила их в 3 вазочки по 5 штук. осчитаем, сколько цветов собрала девочка (на наборном полотне вставлена табличка с рисунками ваз)». Дети считают: 5, 10, 15.

Затем учитель просит по этому рисунку составить пример: 5+5+5=15. Для этого он выставляет числовые фигуры, по которым учащиеся должны самостоятельно составить пример и решить его.

В этот период полезно работать с дидактическим материалом. Сначала учащиеся отсчитывают равные группы предметов, а потом и таблички с изображением равных групп предметов. Например, при счете по 3 они берут в руку каждый раз по 3 палочки (кружочка).

Можно дать также задания: раскрасить клеточки тетради или обвести по 2, по 3 клеточки; нарисовать круги, палочки, треугольники по 2, по 3, по 4, по 5 или раскрасить готовые; составить рисунки к примерам вида 3+3+3=9; по карточкам и по рисункам составить таблички сложения; составить примеры на сложение по рисунку.

Для счета равными группами используются одинаковые монеты.

Подобные упражнения, проводящиеся систематически, подготовят учащихся к запоминанию по существу ответов табличного умножения в пределах 20.

Понятие об умножении как сложении равных слагаемых учащиеся получают на первом уроке. Необходимо показать целесообразность замены сложения умножением, познакомить со знаком умножения (х, •) и с записью действия в строчку. В качестве наглядных пособий используются предметные множества и картинки с изображением предметов, объединенных в равные группы (рис. 12).

Например: «Пересчитайте варежки, связанные парами». Дети считают по 2: 2, 4, б, 8, 10 (рис. 13). Учитель спрашивает, сколько варежек связано вместе. Запишем так, как считали: 2+2+2+2+2 = 10. Сколько пар варежек? (Пять.) Сколько всего варежек? (Десять.) В этом примере сложение можно заменить другим действием — умножением и записать пример короче. Сказать можно так: «По 2 взять 5 раз, получится 10, а записать т.:к 2-5=10».

Так же ведется счет парами, например, вишенок, нарисованных парами на карточках; результат счета записывается сначала ело жением, а потом умножением:

2+2+2+2=8 2x4=8

Учитель спрашивает: «Какое число записывается первым при умножении? (Слагаемое). Какое число записывается вторым? (Число 4.) Что оно обозначает?» (Число слагаемых.)

Упражнения в счете двойками, тройками проводятся и на других наглядных пособиях. Производится замена сложения умножением.

Полезны задания с дидактическим материалом: «Взять по 2 кубика 3 раза. Записать это действие сложением, заменить сложение умножением». (2+2+2=6, 2x3=6.)

Необходимо и без дидактического материала произвести замену действия сложения умножением и наоборот:

3+3+3+3+3=3x5

2x7=2+2+2+2+2+2+2

это сложение позволит сделать вывод, что умножение Ьииных слагаемых.

Таблица умножения составляется по постоянному множимому, тапы знакомства с табличным умножением числа 2:

1.      Счет предметов по 2 до 20 (каждый ученик ведет счет на идактическом материале: отсчитывает по 2 желудя, листочка, (Свадрата и т. д.).

2.      Счет изображений предметов по 2 на рисунках или числоых фигурках и составление примеров на сложение.

3.      Замена сложения умножением и чтение таблицы умножения.

На первом уроке, посвященном этой теме, разбираются примеры:

2+2=4 2+2+2=6 2+2+2+2=8

Здесь число 2 повторяется слагаемым несколько раз. В первой строке число 2 повторяется 2 раза, во второй — 3 раза, в третьей — 4 раза. Рациональнее не записывать каждый раз сумму, состоящую из двух, трех, четырех двоек, а указать, сколько раз надо взять по 2, т. е. заменить сложение одинаковых слагаемых

I умножением.

' Как подвести учащихся к этой мысли, разберем на примере с использованием дидактического материала. Можно взять и веточки, на каждой из которых по 2 листочка. «По скольку листочков на ветке? Сколько раз по 2 листочка? Какие числа складывали? Сколько раз складывали? Сколько получилось? Если по 2 (листочка) взять 4 раза, получится 8 (листочков). Это можно записать так: 2x4=8. Вместо слова «взять» записываем знак х (умножить)».

В целях усвоения и закрепления знаний проводятся упражнения на замену действия сложения умножением и наоборот:

2+2+2=2-3;

2x5=2+2+...

Учащиеся должны уметь проиллюстрировать пример на умножение рисунком, составить по рисункам примеры на сложение и умножение. Затем такую же работу выполнить самостоятельно по индивидуальным карточкам.

На следующем уроке составляется таблица сложения. Ок»< ние заменяется умножением числа 2 на числа 5, 6, 7. На трет! уроке составление таблицы умножения числа 2 заканчивает (2x8, 2x9, 2x10). Теперь учащиеся учатся читать приме) «Два умножить на девять» и т. д.

Далее учащиеся упражняются в чтении таблицы умножен! замене умножения сложением равных слагаемых и наоборот, < ставлении рисунков к примерам на умножение. Таблицу умножг ния числа 2 они заучивают наизусть.

У каждого ученика должна быть карточка с таблицей умножг ния числа 2. Все должны знать, что 2 — это слагаемое (если пример на умножение заменяется примером на сложение), а 5 -число слагаемых. Упражнения по замене сложения равных слагас мых умножением и наоборот помогут учащимся осознать значениг 1-го и 2-го множителей. Название компонентов действия умножения при изучении умножения в пределах 20 учитель употребляет в своей речи, но не требует знания их названий от учащихся.

При составлении с учащимися таблицы умножения любого числа и при ее заучивании необходимо обратить их внимание на то, что ответ последующего примера больше предыдущего на столько единиц, сколько их в 1-м множителе (рис. 14).

Учитель спрашивает: «Сколько пар вишен в верхнем ряду? Сколько пар вишен в нижнем ряду? На сколько пар вишен меньше в верхнем ряду, чем в нижнем? Как, не считая вишни в нижнем ряду, узнать, сколько их?»

2+2+2+2=2x4= 8 2+2+2+2+2=2x5=10

Во втором случае ответ увеличился на 2, так как добавили две вишни, т. е. еще одну двойку.

Во втором случае ответ увеличился на 2, так как добавили две цини, т. е. еще одну двойку.

Эту закономерность необходимо подчеркивать при заучивании таблицы умножения всех чисел. Это поможет учащимся быстрее пучить таблицу. К тому же, если какой-либо табличный ответ ученик не может вспомнить, но помнит ответ предыдущего или последующего примера, он сможет этим помочь себе.

Для лучшего осознания смысла умножения, а также для запоминания таблицы полезны такие упражнения:

1.      Составить по рисунку 15 примеры.

2.      Вставить нужные числа:

ПхП=8

2хП=6

2х2=П

Пх6=12

Чтобы учащиеся научились дифференцировать действия сложения и умножения, полезно предлагать такие упражнения:

1) 2+2+2+2=8. Можно ли в этом случае сложение заменить умножением? Почему?

2+1+2+3=8. Можно ли в этом случае сложение заменить умножением? Почему?

2) Рассмотреть рисунок 15 и вставить нужные знаки.

Подобные упражнения заставляют умственно отсталых учащихся понять, что не во всех случаях сложение можно заменить умножением, осознать, что умножение — это сложение одинаковых слагаемых. Подобные упражнения имеют не только обучающее и развивающее, но и коррекционное значение.

С умножением чисел 3, 4, 5 в пределах 20 учащиеся знакомятся аналогично, опираясь на счет предметов (их изображений) равными группами. Составляются таблицы сложения равных чисел. Сложение равных чисел заменяется умножением.

Но уже при изучении таблицы умножения числа 3 нужно обратить внимание на то, что в изученных таблицах есть примеры с одинаковыми ответами. Учащиеся должны сами отыскать примеры с одинаковыми ответами на индивидуальных карточках, обвести их цветными карандашами одного цвета. Учитель предлагает выписать первую пару примеров (2x3=6, 3x2=6) и сравнить ставя перед учащимися такие вопросы: «Какой ответ в пример. Какие числа умножали? Какое число умножают в первом прт ре? (То же во втором.) На какое число умножают в перв< примере? (То же во втором.) В чем сходство этих примеров? I1. чем их различие?»

Чтобы сделать вывод о переместительном свойстве умножении, ограничиться рассмотрением только примеров нельзя. Это свойп во вводится после рассмотрения ряда рисунков с изображение v предметов или самих предметов и подсчета их общего количесть т. е. с помощью широкого применения дидактического материал Учитель просит всех учеников взять по 2 палочки 3 раз. положить их парами и сказать, сколько всего палочек. Каком пример на умножение можно составить? (2x3=6.)

Затем он просит взять по 3 палочки 2 раза, положить их пи три и сказать, сколько палочек всего, какой пример на умножение можно составить, изменилось ли количество палочек. Рассмотрим рисунок 16 и ответим на вопросы: Сколько яблок в ряду? Сколько рядов по 2 яблока?

Сколько всего яблок? Как записать? (2x3=6.)

Сколько яблок в столбце? Сколько столбцов по 3 яблока?

Сколько всего яблок? Как записать? (3x2=6).

Изменилось ли количество яблок, когда считали их по 2, а потом по 3?

Значит, 2x3=3x2, т. е. от перестановки чисел (множителей) в примерах на умножение ответ (произведение) не изменится. Учитель в своей речи употребляет слова множители, произведение.

Путем замены действия умножения сложением следует еще раз показать учащимся, что результаты при вычислении остаются равными:

2-3=2+2+2=6 3-2=3+3=6

Рассмотрения только одного случая недостаточно, чтобы сделать вывод о переместительном свойстве умножения. 170

Надо показать учащимся, что подобные рассуждения можно провести для любых двух чисел, но взять уже не те примеры, в которых они подметили одинаковые ответы, а любые другие. Например, можно сделать к примеру 3-5=15 рисунок (рис. 17). Сначала считаем по 3 кружочка, расположенных в 5 рядов. Всего 15 кружочков. Затем считаем по 5 кружочков, расположенных в 3 столбца, всего тоже 15 кружков. () () () Значит, 3-5=5.3.

На этих фактах отдельные учащиеся могут рис 17 самостоятельно сделать вывод: от перемены мест множителей произведение не меняется. Для того чтобы, применяя этот закон, учащиеся не оторвались от его наглядной основы, можно время от времени предлагать им составлять рисунок, на котором удобно показать сущность пере-местительного закона умножения.

В дальнейшем, при составлении последующих таблиц умножения, учитель опирается не только на счет равными группами предметов, равными числами и на составление таблицы сложения, но и на переместительный закон умножения.


06.06.2015; 14:44
хиты: 222
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь