пользователей: 28371
предметов: 12171
вопросов: 229156
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

10

 

1.Явление изотопии. Группы радиоизотопов по радиотоксичности, учитываемые в рациональной гигиене.

Изотопы - разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди, который образовал его из двух греческих слов: isos - одинаковый и topos - место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 Джеймсом Чедвиком был открыт нейтрон - частица, не имеющая заряда, с массой, близкой к массе ядра атома водорода - протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы - это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов AZX, где X - символ химического элемента, Z - заряд ядра атома (число протонов), А - массовое число изотопа (общее число нуклонов - протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение AX.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2H и 3H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные - радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов - 10 обнаружено у олова, у железа, например, их - 4, у ртути – 7.

По Нормам радиационной безопасности (НРБ-76/87), все радионуклиды подразделяются по своей радиотоксичности на 4 группы. Группу А составляют особо опасные для человека радионуклиды тяжелых элементов, ядра которых испытывают спонтанное деление или α-распад; они имеют сравнительно большие Т1/2 и способны накапливаться в жизненно важных органах человека. К их числу принадлежат 210Ро, 238Pu, 239Pu,240Pu, 242Pu, 244Pu, 252Cf и др. Группу Б с высокой токсичностью составляют такие радионуклиды, как 90Sr, 106Ku, 131I, 144Ce, 235U. Группу В составляют радионуклиды со средней токсичностью (45Са, 60Со, 95Zr и др. Наконец, в группу Г входят радионуклиды с малой радиотоксичностыо (14С, 3Н и др.). Радиотоксичность радионуклида характеризуется его допустимой концентрацией в воздухе рабочей зоны. Это есть отношение предельно допустимого поступления (ПДП) радиоактивного вещества к объему V воздуха, с которым оно поступает в организм человека в течение года (V принимается равным 2,5·106 л/год).

2.Влияние ионизационного излучения на нуклеиновый, белковый и липидный обмены.

 Нуклеиновые механизмы повреждения клеток: составляют нарушение  репликации ДНК, транскрипции и трансляции.

Реализация  данных молекулярных механизмов повреждения клетки на субклеточном уровне приводит к нарушению строения и функции отдельных его органелл. Поскольку большинство из них есть мембранными образованиями, то универсальным механизмом повреждения субклеточных структур есть нарушение проницаемости и целостности клеточных мембран.В ответ на повреждение возникают оградительно-компенсаторные реакции, направленные на возвращение к исходному структурному и функциональному уровню. Все разнообразные оградительно-компенсаторные реакции клетки в ответ на его повреждение можно условно разделить на две группы: направленные на восстановление нарушенного внутриклеточного  гомеостаза -  группа содержит в себе активацию механизмов активного транспорта ионов, репаративный синтез поврежденных компонентов клетки, усиленную регенерацию антиоксидантних систем и др. И направленные   на создание  функционального покоя  поврежденной  клетки - эта группа реакций направлена на то, чтобы устранить возможные дополнительные сдвиги внутриклеточного гомеостаза при действии физиологичных нервных и гуморальных повреждающих факторов, (стабилизация повреждения) и свести к минимуму энергетические расходы на выполнение специфических функций клетки, обеспечив таким способом энергетические ресурсы для возобновления нарушенного гомеостаза.

 Протеиновые механизмы включают:

Денатурация - нарушение нативной структуры белковых молекул в результате изменений вторичной и третичной структуры белка, в результате разрыванековалентних связей

·              Угнетение активности ферментов

·             Протеолиз под действием лизосомальных гидролитических ферментов (катепсинов) и Ca-активированных протеаз.

Липидные механизмы повреждения клетки включают в себя несколько групп реакций:

активацию мембранных фосфолипаз . В патогенезе повреждения клетки важное значение имеет избыточная активация фосфолипазы А2  фермента, что осуществляет гидролитическое отщепление ненасыщенной жирной кислоты  одного из двух гидрофобних хвостов молекулы фосфолипида.

перекисное окисление липидов Перекисним окислением липидов (ПОЛ) называется свободнорадикальное окисление ненасыщенных жирных кислот, которые входят в состав фосфолипидов клеточных мембран. Инициаторами ПОЛ являются свободные радикалы, среди которых наибольшее значение имеют: О2- - анион-радикал суперокисла (в водной среде находится в виде НО2 ); ОН• - гидроксильный радикал; Н• - водородный радикал; О2 - синглетний (возбужденный) кислород, в которого один из электронов перешел на более высокий энергетический уровень.

В процессе повреждения клетки возможные 2 механизма активации ПОЛ – 1)избыточное образование первичных свободных радикалов, 2)нарушение функционирования антиоксидантних систем клетки.

детергентное действие свободных жирных кислот Свободные жирные кислоты в больших концентрациях, так же как и лизофосфолипиды, осуществляют детергентное действие и  вызывают нарушение  двойного липидного слоя мембран

 Липидные механизмы повреждения приводят к нарушению двух основных функций двойного липидного слоя клеточных мембран: матричной сущность  матричной функции двойного липидного слоя мембран заключается в том, что в нем вмонтированы мембранные ферменты и некоторые специализированные белки. В процессе ПОЛ нарушается активность мембранных ферментов в связи с изменением их липидного микроокружения. Кроме того, в ходе реакций ПОЛ может состояться образование "сшиваний" между молекулами белков и фосфолипидов, а также окисления сульфгидрильных групп активных центров, что приводит к необратимой инактивации ферментов и нарушению барьерной функции. В основе нарушения барьерной функции мембран лежат два основных механизма:ионофорний и механизм электрического пробоя.

3.Особенности лучевой болезни при внутреннем поражении.

При попадании в живой организм значительного количества радиоактивных изотопов развивающиеся в нем изменения имеют совершенно ту же физическую природу, что и при воздействии излучений извне. Особенности внутреннего облучения носят поэтому главным образом количественный характер. Картина лучевого поражения во многом зависит от характера излучения, присущего данному изотопу (альфа-, бета- или гамма-излучатель), от его дозы и поведения в организме. Альфа-излучатели вызывают повреждение тканей на ограниченном участке, обычно в органе, в котором они накапливаются. Повреждения могут быть достаточно грубыми, ввиду высокой линейной плотности ионизации, присущей альфа-частицам. Изотопы, излучающие преимущественно бета- и гамма-лучи, дают более разлитое, менее локализованное повреждение тканей.

Серьезное значение имеет растворимость изотопа в жидкостях организма, способность всасываться через неповрежденную кожу (присущая главным образом жирорастворимым веществам), быстрота проникновения в кровь. За периодом всасывания изотопа, поступления в кровь наступает период его циркуляции по жидкостным системам организма и период постепенного связывания изотопа органами его фиксации. Соответственно особенностям поведения радиоактивных изотопов изменяется и картина лучевого поражения. Благодаря постепенности всасывания начало болезни протекает более постепенно, менее бурно, чем при внешнем облучении организма. Переходы от одного клинического периода болезни к другому выражены недостаточно четко. Поэтому в случае лучевого поражения, вызванного значительной дозой проникшего внутрь радиоактивного изотопа, правильнее применять термин "подострое", а не "острое" течение болезни.

Периоду циркуляции изотопа в крови соответствует состояние общего поражения организма, сходное с картиной третьего периода острой лучевой болезни, вызванной внешним облучением. В этот период преобладают симптомы раздражения нервной системы (головные боли, головокружения, раздражительность, повышение температуры), кроветворной системы (повышенное количество ретикулоцитов, молодых форм лейкоцитов в крови, кровяных клеток с определенными нарушениями), пищеварительного тракта (поносы) и т. п. Постепенно явления раздражения сменяются угнетением функций организма, в первую очередь угнетением кроветворения, сохраняющимся длительно и обусловливающим переход болезни (при фиксации в организме значительного количества изотопа) в хроническую форму. На фоне этого хронического процесса постепенно все более вырисовываются симптомы поражения отдельных органов, прежде всего тех, которые стали местом фиксации радиоактивного изотопа.

Изотопы, равномерно распределяющиеся в организме (тритий, натрий - 24, цезий - 137, рутений - 106, теллур - 127 и др.), дают картину тотального поражения организма, весьма близкую к картине острой или подострой лучевой болезни, вызванной внешним облучением. В поражающем действии других изотопов, имеющих в организме свое излюбленное место накопления, постепенно вырисовывается преимущественное поражение именно этих и соседних органов. Клиническая картина отравления организма такими изотопами имеет много общего с проявлениями местного или преимущественного поражения радиацией, действующей извне.

Изотопы, накапливающиеся в костях (стронций - 89 и - 90, кальций - 45, радий - 226, уран - 238, плутоний - 239, иттрий - 91, цирконий - 95), преимущественно поражают костную ткань, костный мозг и половые железы, что проявляется в длительном снижении уровня лейкоцитов, тромбоцитов, в малокровии, в неустойчивости и легкой ранимости кроветворной системы, в длительном бесплодии. В более отдаленные сроки реальна опасность развития злокачественных опухолей костей.

Радиоактивные изотопы, плохо растворимые в жидкостях организма и циркулирующие в них в виде коллоидных растворов (церий - 144, торий - 232, лантан - 140), захватываются элементами ретикуло-эндотелиальной системы и преимущественно поражают печень, селезенку, лимфатические узлы, вызывая уменьшение количества лимфоцитов и других форм белых кровяных телец, длительное нарушение выработки антител, крайнее ослабление защитных сил организма, облегчающее развитие воспалительных и иных болезненных процессов, нарушения функции печени и т. п.

Радиоактивный цинк накапливается в поджелудочной железе, молибден - в радужной оболочке глаза, железо - в эритроцитах крови. Отравление ими может приводить к поражению этих органов. Проникновение в организм радиоактивного йода приводит к быстрому его накоплению в ткани щитовидной железы. Поскольку радиоактивный йод излучает сравнительно мягкие бета-лучи, его действие ограничивается преимущественно тканью щитовидной железы. Этим пользуются врачи, применяя радиоактивный йод с лечебной целью когда необходимо разрушить часть ткани этой железы (опухоль, некоторые формы зоба и т. п.). Другие изотопы частично накапливаются в печени. При внутреннем облучении могут преимущественно поражаться органы, через которые изотоп удаляется из организма (почки, желчные пути, кишечник).

Органы, в которых накапливаются радиоактивные изотопы, или пораженные внутренним облучением, чаще становятся жертвой последствий действия радиации (лейкемий, злокачественных опухолей, нефросклероза и т. п.).

Если протоны и электроны при соприкосновении с живым телом вызывают в нем все тот же эффект ионизации (а также возбуждения), подобный действию рентгеновских и гамма-лучей, то действие нейтронов сложнее. Будучи незаряженными, эти частицы способны проникать внутрь атомов, вызывая внутриядерные реакции и, в частности, образование искусственных радиоактивных изотопов. После нейтронного облучения более или менее длительно сохраняется так называемая наведенная радиоактивность. За счет этого процесса организм может дополнительно получить некоторую дозу радиации. Описанный эффект играет главную роль при действии лишь так называемых медленных нейтронов, обладающих малой скоростью и энергией. Быстрые нейтроны, сталкиваясь с ядрами атомов, отдают им часть своей энергии, превращая их в ядра отдачи, вызывающие вторичную ионизацию. Особенно быстро нейтроны отдают свою энергию ядрам водорода - протонам. Поэтому вода - один из лучших поглотителей нейтронного облучения, а биологическое действие быстрых нейтронов в большой мере обусловлено ионизирующей активностью протонов отдачи.

Физические эффекты, вызываемые различными ионизирующими агентами, весьма сходны, поэтому мало отличаются и их биологические эффекты. Однако количественные различия могут быть значительными. Дело в том, что линейная плотность ионизации для протонов, нейтронов, альфа-частиц, как правило, значительно выше, чем рентгеновских и гамма-лучей. В пределах одной клетки протон или нейтрон успевает вызвать гораздо больше ионизации, а значит, и повреждений, чем гамма-квант. Поэтому при одинаковой физической дозе излучения биологический эффект альфа-частиц, протонов, нейтронов (с энергией несколько миллионов электрон-вольт) оказывается в 5 - 10 раз выше, чем у гамма-лучей. Но с увеличением энергии и скорости ионизирующих частиц число пар ионов на единицу их пробега уменьшается, а относительная биологическая эффективность (вычисленная по выживаемости, средней продолжительности жизни животных, срокам наступления периодов лучевой болезни, тяжести клинической картины, изменениям крови и т. п.) сначала уменьшается до единицы, а затем падает еще ниже. По данным советских авторов, протоны с энергией в 126 Мэв (мегаэлектронвольт) примерно столь же активны, как гамма-лучи, а протоны 660 Мэв почти вдвое менее эфективны, чем гамма-лучи (ОБЭ колеблется по разным показателям от 0,5 до 0,9 - 1,0).

Так обстоит дело с ранними проявлениями лучевого поражения. Оказывается, лучевые катаракты особенно часто возникают после нейтронного облучения. Что же касается наиболее грозного последствия облучения организма - злокачественных новообразований, то после воздействия нейтронных и протонных потоков опухоли возникают весьма часто и в больших количествах.Наконец, животные, перенесшие нейтронное облучение, нередко гибнут через несколько месяцев, по-видимому, из-за глубокого повреждения иммунологических, защитных механизмов, из-за пониженной сопротивляемости организма. Таким образом, потоки частиц высоких энергий, наряду с общим ионизирующим действием, сходным с эффектом гамма-лучей, обладают и некоторыми специфическими отличиями, обусловленными иной линейной плотностью ионизации и проявляющимися как в ранний период, так и в отдаленные сроки после облучения.


28.06.2015; 22:56
хиты: 49
рейтинг:0
Естественные науки
науки о жизни
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2018. All Rights Reserved. помощь