пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

ЛИТЕЙНОЕ ПРОИЗВОДСТВО

Лекция 1

Основные понятия литейного производства

Понятие литейного производства. Краткий исторический обзор развития литейного производства. Роль российских ученых в развитии научных основ и организации производства отливок и слитков. Классификация литейных сплавов и области их применения. Литейные и физико-химические свойства сплавов.

Понятие литейного производства

Сущность литейного производства сводится к получению жидкого, т.е. нагретого выше температуры плавления, сплава необходимого состава и качества и заливке его в заранее приготовленную форму. После охлаждения металл затвердевает и сохраняет конфигурацию той полости, в которую он был залит. Таким образом, чтобы изготовить отливку, необходимо:

1) определить материалы, которые нужно ввести в шихту для плавки, произвести их расчет, подготовить эти материалы (разделать на куски, отвесить нужное количество каждого компонента); загрузить материалы в плавильную печь;

2) осуществить плавку – получить жидкий металл необходимой температуры, жидкотекучести, должного химического состава, без неметаллических включений и газов, способный при затвердевании образовать мелкокристаллическую структуру без дефектов с достаточно высокими механическими свойствами;

3) до окончания плавки приготовить литейные формы (для заливки в них металла), способные, не разрушаясь, выдерживать высокую температуру металла, его гидростатическое давление и размывающее действие струи, а также способные пропускать через поры или каналы выделяющиеся из металла газы;

4) произвести выпуск металла из печи в ковш и доставить его к литейным формам; выполнить заливку литейных форм жидким металлом, не допуская перерывов струи и попадания в форму шлака;

5) после затвердевания металла раскрыть формы и извлечь из них отливки;

6) отделить от отливки все литники (металл, застывший в литниковых каналах), а также образовавшиеся (при некачественной заливке или формовке) приливы и заусеницы;

7) очистить отливки от частиц формовочной или стержневой смеси;

8) осуществить контроль качества и размеров отливок.

В настоящее время наибольшее число отливок получают в разовых (песчаных) формах, выполняемых из формовочной смеси, состоящей из кварцевого песка, огнеупорной глины и специальных добавок. После затвердевания металла форму разрушают и извлекают отливку. Кроме разовых, применяют полупостоянные формы, изготовленные из высокоогнеупорных материалов (шамота, графита и др.), они используются для заливки нескольких десятков (50–200) отливок, и постоянные формы – металлические, они служат для получения нескольких сотен, а иногда и тысяч отливок до износа формы. Выбор литейной формы зависит от характера производства, рода заливаемого металла, требований, предъявляемых к отливке.

Краткий исторический обзор развития литейного производства.

Роль российских ученых в развитии научных основ и организации производства отливок и слитков

Литейное производство является одним из самых древних видов искусства обработки металлов, с которым познакомилось человечество. Многочисленные археологические находки, обнаруженные при раскопках курганов в различных пунктах нашей страны свидетельствуют, что и в Древней Руси медное и бронзовое литье производилось в достаточно большом количестве (котелки, наконечники стрел, украшения – серьги, запястья, кольца, головные уборы и др.). При раскопках обнаружены были уцелевшие горны и печи, каменные формочки, служившие для отливки полых топоров, колец, браслетов, металлических бус, крестов и др. Однако большая часть найденных в Древней Руси отливок была получена литьем по восковой модели. Оригинален способ изготовления модели: из провощенных шнуров сплетали узор, представляющий копию будущего изделия; на эту восковую модель наносили глину, пока не получалась достаточно прочная форма, после высушивания форму прокаливали, воск выплавлялся, а шнуры выгорали, в образовавшуюся полость заливали металл, после охлаждения получалась отливка сложных очертаний.

В ХI в. на Руси возникли местные производственные центры для отливки предметов церковного (медные кресты, колокола, образки, подсвечники и др.) и домашнего (котелки, рукомойники и др.) обихода. Помимо Киева, Новгорода Великого, крупными центрами по выпуску медно-литых изделий стали Устюг Великий, Тверь. Татарское нашествие вызвало застой, продолжавшийся до середины ХIV в., после чего начался подъем литейного производства. Это объясняется тем, что создалось централизованное крупное государство, в связи с чем начали развиваться города и потребовалось вооружение, теперь уже огнестрельное. С производства сварных пушек перешли на бронзовые – литые, отливали колокола, создавали медно-литейные мастерские художественного литья. К середине ХVI в. московская артиллерия занимала в количественном отношении первое место среди артиллерии европейских государств.

Петровская эпоха представляет скачок в развитии литейного производства. Были созданы большие тульские и калужские заводы Никиты Демидова и Ивана Баташова. Первые стальные отливки были получены во второй половине ХIХ в. почти одновременно в различных странах Европы. В России их изготовили в 1866 г. из тигельной стали на Обуховском заводе. Однако качество отливок оказалось низким, так как литейные свойства стали значительно уступали свойствам чугуна. Благодаря работам русских ученыхметаллургов А.С. Лаврова и Н.В. Калакуцкого, которые объяснили явления ликвации и представили механизм возникновения усадочных и газовых раковин, а также разработали меры борьбы с ними, в полной мере раскрылись достоинства стальных отливок. Поэтому фасонные отливки, полученные А.А. Износковым из мартеновской стали на Сормовском заводе в 1870 г., оказались такого высокого качества, что демонстрировались на выставке в Санкт-Петербурге.

После выхода научных трудов основоположника металлографии Д.К. Чернова, создавшего науку о превращениях в сплавах, об их кристаллизации, структуре и свойствах, начали применять термическую обработку, которая улучшила качество стального литья. Теория металлургических процессов была введена в высшей школе А.А. Байковым в 1908 г. в Петербурском Политехническом институте.

В период с 1927 по 1941 гг. происходит невиданный для прежней России рост промышленности, строятся крупнейшие механизированные заводы. Строятся и пускаются литейные цехи, работающие на поточном режиме, с высокой степенью механизации, с конвейерами, с годовым выпуском до 100 тыс. т литья.

Одновременно проводятся научно-исследовательские работы, создаются теории рабочих процессов и методов расчета литейного оборудования. Формируется научная школа Московского высшего технического училища, основанная и возглавляемая проф. Н.П. Аксеновым.

Широкое распространение литейного производства объясняется большими его преимуществами по сравнению с другими способами производства заготовок (ковкой, штамповкой). Литьем можно получить заготовки практически любой сложности с минимальными припусками на обработку. Кроме того, производство литых заготовок значительно дешевле, чем, например, производство поковок.

Развитие литейного производства до наших дней проходило по двум направлениям:

1) разработка новых литейных сплавов и металлургических процессов;

2) совершенствование технологии и механизации производства.

Большие успехи были достигнуты в области изучения и улучшения механических и технологических свойств серых чугунов – наиболее распространенных и дешевых литейных сплавов. Все большее распространение получают и совершенствуются специальные виды литья: кокильное, под давлением, в оболочковые формы, по выплавляемым моделям и др., обеспечивающие получение точных отливок и, следовательно, уменьшение затрат на обработку резанием.

Классификация литейных сплавов и области их применения

В среднем на долю литых деталей приходится около 50 % массы машин и механизмов, а их стоимость достигает 20––25 % от стоимости машин. В зависимости от метода получения литых заготовок сплавы подразделяют на литейные и деформированные. Литейные сплавы либо приготовляют из исходных компонентов (шихтовых материалов) непосредственно в литейном цехе, либо получают с металлургических комбинатов в готовом виде и только переплавляют перед заливкой в литейные формы. Как в первом, так и во втором случае отдельные элементы в процессе плавки могут окисляться (угарать), улетучиваться при повышенных температурах (возгоняться), вступать в химическое взаимодействие с другими компонентами или с футеровкой печи и переходить в шлак.

Для восстановления требуемого состава сплава потери отдельных элементов в нем компенсируют, вводя в расплав специальные добавки (лигатуры, ферросплавы), приготовляемые на металлургических предприятиях. Лигатуры содержат помимо легирующего элемента также и основной металл сплава, поэтому uc2
они легче и полнее усваиваются расплавом, чем чистый легирующий элемент. При плавке сплавов цветных металлов применяют лигатуры: медь––никель, медь––алюминий, медь––олово, алюминий––магний и др. При литье черных сплавов широко используют ферросплавы (ферросилиций, ферромарганец, феррохром, ферровольфрам и др.) для введения легирующих элементов, а также для раскисления расплава. В процессе раскисления элементы, содержащиеся в ферросплавах, выполняют роль восстановителей: они соединяются с кислородом оксида, растворенного в расплаве, восстанавливают металл, а сами, окислившись, переходят в шлак. Очищение (рафинирование) расплава раскислением способствует значительному улучшению качества металла отливки, повышению его прочности и пластичности. Ряд сплавов, а также неметаллических материалов (солей и др.) используют в качестве модификаторов, которые при введении в литейный сплав в небольших количествах существенно влияют на его структуру и свойства, например, измельчают зерно и способствуют повышению прочности металла. Так, для получения высокопрочного чугуна используют модифицирование магнием.

Основными критериями качества литого металла являются механические свойства, показатели структуры, жаростойкости, износостойкости, коррозионной стойкости и др., заданные в технических требованиях.

Сплавы принято разделять, как и металлы, прежде всего на черные и цветные, причем в последние входят и легкие сплавы. Сплавы подразделяют на группы в зависимости от того, какой металл является основой сплава. Наиболее важными группами сплавов считаются следующие:

  • чугуны и стали – сплавы железа с углеродом и другими элементами;
  • сплавы алюминия с различными элементами;
  • сплавы магния с различными элементами;
  • бронзы и латуни – сплавы меди с различными элементами.

В настоящее время наиболее широкое применение находят сплавы первой группы, т.е. сплавы черных металлов: около 70 % всех отливок по массе изготовляют из чугуна и около 20 % – из стали. На долю остальных групп сплавов приходится сравнительно небольшая часть общей массы отливок.

В химическом составе сплава различают основные элементы (например, железо и углерод в чугуне и стали), постоянные примеси, наличие которых обусловлено процессом производства сплава, и случайные примеси, попавшие в сплав вследствие тех или иных причин. К вредным примесям в стали и чугуне относятся сера, фосфор, закись железа, водород, азот и неметаллические включения. Вредными примесями в медных сплавах являются закись меди, висмут и в некоторых из них – фосфор. Резко ухудшают свойства оловянной бронзы примеси алюминия и железа, а в алюминиевой бронзе, наоборот, – олово. В алюминиевых сплавах должно быть ограничено содержание железа, в магниевых, кроме того, – меди, никеля и кремния. Газы и неметаллические включения во всех сплавах являются вредными примесями.

Требования к каждому литейному сплаву специфичны, однако существует и ряд общих требований:

  • состав сплава должен обеспечивать получение заданных свойств отливки (физических, химических, физико-химических, механических и др.);
  • сплав должен обладать хорошими литейными свойствами – высокой жидкотекучестью, несклонностью к насыщению газами и к образованию неметаллических включений, малой и стабильной усадкой при затвердевании и охлаждении, несклонностью к ликвации и образованию внутренних напряжений и трещин в отливках;
  • сплав должен быть по возможности простым по составу, легко приготовляться, не содержать токсичных компонентов, не выделять при плавке и заливке сильно загрязняющих окружающую среду продуктов;
  • сплав должен быть технологичным не только в изготовлении отливок, но и на всех последующих операциях получения готовых деталей (например, при обработке резанием, термообработке и т.д.);
  • сплав должен быть экономичным: содержать по возможности меньшее количество дорогостоящих компонентов, иметь минимальные потери при переработке его отходов (литников, брака).

Литейные и физико-химические свойства сплавов

К основным литейным свойствам сплавов относят жидкотекучесть, усадку, ликвацию, склонность к образованию трещин и отбелу.

Жидкотекучесть – способность металла в расплавленном состоянии заполнять литейную форму, четко воспроизводя ее контуры и поверхность. При низкой жидкотекучести движение расплава в форме может прекратиться раньше, чем она будет заполнена. На жидкотекучесть оказывают влияние многие факторы, связанные со свойствами, состоянием и строением расплава (его природа, температура при заливке, вязкость, поверхностное натяжение, теплоемкость и теплопроводность, наличие включений и др.). Жидкотекучесть определяют по технологической пробе и оценивают по длине спирального (или прямолинейного) канала, заполненного расплавом в контрольной форме.

Усадка – свойство металлов и сплавов уменьшать объем при охлаждении в расплавленном состоянии, в процессе затвердевания и в затвердевшем состоянии при охлаждении до температуры окружающей среды. Различают объемную и линейную усадки, выражаемые в процентах. Результатом объемной усадки являются усадочные раковины и поры в отливке. Усадку сплава определяют на специальных технологических пробах и оценивают по разности размеров (или объема) сплавов до затвердевания и после охлаждения.

Ликвация – неоднородность химического состава сплава в различных местах сечения отливки, возникшая при ее затвердевании. Ликвацию определяют химическим способом или спектральным анализом. Склонность сплавов к образованию трещин проявляется в процессе затрудненной усадки при охлаждении.

Отбел – склонность чугуна к выделению структурно свободных карбидов сверх необходимого для образования перлитной структуры. Величина отбела зависит в основном от скорости охлаждения отливки и химического состава чугуна. Чем выше скорость охлаждения, тем больше склонность чугуна к образованию отбела. Химическими элементами, уменьшающими отбел, являются углерод, кремний, алюминий, титан и др.; увеличивающими – ванадий, марганец, молибден, хром и др. Толщина проб для определения склонности чугуна к отбелу связана с преобладающей толщиной сечения стенок отливки.

Если к литым деталям не предъявляется высоких требований в отношении механических и других свойств, то обычно такие детали изготовляются из самого дешевого литейного сплава – чугуна, обладающего относительно невысокой температурой плавления, хорошей жидкотекучестью и малой усадкой. Но если детали должны иметь высокие механические свойства, то их необходимо изготовлять из стали, хотя она дороже чугуна и имеет высокую температуру плавления, худшую жидкотекучесть и большую усадку. Иногда решающее значение имеет среда, в которой должны работать детали. Например, для работы в морской воде они изготовляются из более дорогих медных сплавов (бронзы и иногда латуни), так как чугун и обычная сталь в такой среде легко разрушаются из-за недостаточной химической стойкости. ри изготовлении отливок для самолетостроения, когда решающее значение имеет масса, применяют алюминиевые или магниевые сплавы, несмотря на их высокую стоимость.

Химические составы литейных сплавов указаны в ГОСТах и технических условиях. В существующих ГОСТах регламентируется качество более 200 литейных сплавов. Отливки из 400 литейных сплавов изготовляются по техническим условиям, принятым изготовителем и потребителем.

Химический состав и механические свойства стальных отливок регламентируются ГОСТ 977-88, отливок из серого чугуна – ГОСТ 1412-85, высокопрочного модифицированного чугуна – ГОСТ 7293-85, из сплавов на основе алюминия – ГОСТ 1583-93, магниевых сплавов – ГОСТ 2856-79 и т.д.

Контрольные вопросы и задания:

1. Какова история развития литейного производства в России?

2. Какова роль русских ученых в развитии научных основ и организации производства отливок из сплавов черных и цветных металлов?

3. Каковы методы получения литых заготовок?

4. Какие литейные формы можно использовать для получения фасонных отливок?

5. Каким образом классифицируют литейные сплавы?

6. Каковы требования к литейным сплавам?

7. Перечислите основные области применения литейных сплавов.

8. В чем заключается сущность литейной технологии?

9. По каким технологическим пробам определяют жидкотекучесть и усадку сплавов?

10. Какие характеристики металлов регламентируются ГОСТами и ТУ?

Лекция 2

Особенности плавки сплавов черных и цветных металлов

Производство отливок из чугуна. Производство отливок из стали. Производство отливок из литейных алюминиевых сплавов. Производство отливок из литейных магниевых сплавов. Производство отливок из медных сплавов.

Производство отливок из чугуна

Чугун является наиболее распространенным материалом для изготовления фасонных отливок. В строительной технике (колонны, котлы, ванны, трубы, радиаторы и др.), в металлургической промышленности (изложницы, поддоны, прокатные валки и др.), в транспортном машиностроении (коленчатые валы из высокопрочного чугуна для автомобилей, тракторов и др.).

Кристаллизация и структурообразование чугуна. Чугун представляет собой сплав железа с углеродом, которого он содержит в пределах от 2,6 до 4,5 %. В чугуне всегда имеются примеси: 0,5–3,5 % Si; 0,3–1,5 % Mn; до 1,0 % Р и до 0,15 % S. Для улучшения качества чугуна в него могут вводиться легирующие примеси (Ni, Cr, Сu, Mo и др.) – от десятых долей процента до 15– 20 % в специальных чугунах.

Наиболее важный этап кристаллизации чугуна – эвтектическое превращение, при котором происходит распад жидкости на аустенит и высокоуглеродистую фазу. Последняя и определяет структуру чугуна. Он будет белым, если высокоуглеродистой фазой является цементит, или серым, если высокоуглеродистой фазой является графит. В половинчатом чугуне наряду с графитом находится цементит.

Влияние химического состава на литейные и механические свойства чугуна. Углерод и кремний – графитизирующие элементы. Для большинства отливок применяют чугуны с содержанием углерода от 2,7 до 3,6 %. Чем больше содержание углерода, тем больше жидкотекучесть чугуна и ниже температура плавления. С увеличением общего содержания углерода понижается механическая прочность чугуна, так как при этом увеличивается количество графита, снижающего прочность металлической фазы. Содержание кремния обычно составляет не более 2,5 %. Марганец и сера – это элементы, тормозящие графитизацию. Увеличение содержания марганца способствует повышению твердости чугуна и ухудшению обрабатываемости. При повышении содержания серы увеличивается усадка чугуна, снижается его жидкотекучесть, повышается хрупкость. Содержание серы обычно находится в пределах 0,1–0,12 %. Фосфор, подобно сере, уменьшает растворимость углерода в жидком чугуне. Повышение содержания фосфора увеличивает жидкотекучесть чугуна, но при этом возрастает хрупкость металла. Содержание фосфора не превышает 0,25 %, но в отливках для художественного литья и в тонкостенных отливках для предметов народного потребления с целью повышения жидкотекучести содержание фосфора увеличивают до 1,0–1,5 %.

Легирующими элементами являются: никель – подобно кремнию графитизатор, способствующий разложению цементита, содержание никеля в серых чугунах составляет 0,3–0,4 %; хром – препятствует графитизации, увеличивает твердость и устойчивость против износа, его обычно вводят в чугун вместе с никелем. При этом достигается измельчение графита и выравнивание твердости в тонких и толстых сечениях.

Влияние скорости охлаждения на свойства чугуна. Чем больше скорость охлаждения, тем больше углерода оказывается в связанном состоянии, в виде цементита, поэтому в тонкостенных отливках возможен отбел. В толстостенных отливках, которые охлаждаются медленнее, наоборот, большая часть углерода выделяется в виде крупных пластинок графита, механические свойства таких отливок низкие.

Классификация и свойства отливок из чугуна. Отливки из серого чугуна с пластинчатым графитом используются главным образом в качестве деталей машин, определяющим для оценки качества чугуна для отливок этой группы являются его механические свойства, регламентируемые ГОСТ 1412-85.

Чугун – это железоуглеродистый сплав, содержащий более 2,14% углерода. Чугун – важнейший первичный продукт черной металлургии. Чугун вторичной плавки – один из основных конструкционных материалов, используемый как литейный сплав.

Чугун отличается от стали по составу – более высоким содержанием углерода, по технологическим свойствам – лучшими литейными качествами, малой способностью к пластической деформации (в обычных условиях не поддается ковке). Чугун дешевле стали.

В зависимости от состояния углерода в чугуне различают:

  • белый чугун, в котором весь углерод находится в связанном состоянии в виде карбида;
  • серый чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме пластинчатого графита;
  • высокопрочный чугун, в котором углерод в значительной степени или полностью находится в свободном состоянии в форме шаровидного графита;
  • ковкий чугун, получающийся в результате отжига отливок из белого чугуна. В ковком чугуне весь углерод или значительная его часть находится в свободном состоянии в форме хлопьевидного графита (углерода отжига).

Таким образом, чугун (кроме белого) отличается от стали наличием в структуре графитовых включений, а между собой чугуны различаются формой этих включений.

Отливки малой или средней прочности изготавливают из чугунов марок СЧ 10, 15, 20 (условное обозначение марки включает буквы СЧ – серый чугун и цифровое обозначение величины минимального временного сопротивления при растяжении в МПа·10-1); отливки повышенной прочности – из низколегированных и модифицированных чугунов СЧ 25, 30, 35.

Отливки из чугуна с шаровидной формой графита делят в зависимости от технологических методов получения структуры на отливки из ковкого чугуна и отливки из высокопрочного модифицированного чугуна. Отливки из ковкого чугуна имеют структуру (хлопьевидный графит), получаемую специальным отжигом отливок, имеющих в литом состоянии структуру белого чугуна. Ковкий чугун в основном используется как конструкционный материал, обладающий ценной комбинацией свойств прочности и пластичности (чугун назван «ковким» из-за способности пластически деформироваться в горячем состоянии, однако, практически такой обработке он не подвергается). Ковкий чугун применяют для изготовления мелких, тонкостенных отливок для сельскохозяйственных машин и автомобилей. Согласно ГОСТ 1215-79 (изменен в 1991 г.), отливки из ковкого чугуна маркируют двумя буквами КЧ, далее следуют две цифры – первая характеризует временное сопротивление при растяжении, а вторая – относительное удлинение, %.

Отливки из высокопрочного модифицированного чугуна имеют шаровидную форму графита в результате введения в жидкий чугун модификаторов: Mg, Ca, Li, Na и др. Наибольшее применение получил магний, при содержании которого 0,03–0,05 % графит кристаллизуется в чугуне в виде шаровидных включений (глобулей). Такой чугун называют магниевым. В отличие от КЧ получение шаровидной формы графита в ВЧ (высокопрочный чугун) практически не ограничивается толщиной стенки и массой отливки. Высокопрочный чугун широко применяется для отливки деталей металлургического оборудования, к которым предъявляются специальные требования (например, жаропрочность). Согласно ГОСТ 7293-85 маркируют его буквами ВЧ, далее следует цифра, характеризующая временное сопротивление при растяжении.

В белом чугуне нет графита, весь углерод находится в виде цементита, поэтому излом его не серый, что характерно для СЧ и ВЧ, а блестящий белый. Белый чугун применяют как материал, обладающий высокой стойкостью при абразивном износе и сухом трении (детали дробильного оборудования – щеки дробилок, бронь шаровых мельниц, мелющие шары, лопатки шнеков, детали шламовых насосов). Вследствие повышенной хрупкости белого чугуна и трудностей его механической обработки широко используют отливки, в которых отбеленный слой получают только на рабочей поверхности (сердцевина из СЧ), например, прокатные валки, крановые колеса. Для особо жестких условий эксплуатации применяют легированный белый чугун, например, хромоникелевый чугун «нихард», содержащий до 5% Ni и 2–2,5% Cr.

Плавку чугуна осуществляют в вагранках (коксовых, коксогазовых, газовых), а также в электрических печах (индукционных и дуговых).

Производство отливок из стали

Сталь – это деформируемый (ковкий) железоуглеродистый сплав, содержащий до 2 % и другие элементы. С. Наряду с углеродом в сталях присутствуют Mn, Si, S, Р, N, H, О и другие элементы, попавшие в нее из шихтовых материалов или введенные в процессе ее производства (Mn и Si в углеродистые стали вводят, например, для раскисления). Другие (легирующие) элементы добавляют для придания стали особых физических, физико-химических свойств или повышения ее прочности. Это чаще всего Cr, Ni, Mo, V, W, а также Mn и Si в количестве, превышающем потребности раскисления. Сталь широко применяют прежде всего для деталей, которые наряду с высокой прочностью должны обладать хорошими пластическими свойствами, быть надежными и долговечными в эксплуатации. Многие стали хорошо свариваются, что дает возможность изготовлять сложные сварно-литые конструкции.

Классификация стальных отливок. Стальные отливки можно классифицировать: по химическому составу; структуре; назначению отливок; способу выплавки стали.

По химическому составу стальные отливки подразделяют на 4 класса: 1) из углеродистой нелегированной стали; 2) из низколегированной стали с содержанием легирующих элементов до 2,5 %; 3) из среднелегированной стали с содержанием от 2,5 до 10 % легирующих элементов; 4) из высоколегированной стали, содержащей более 10 % легирующих элементов.

По структуре раздельно классифицируют углеродистые и легированные стали, так как сходные структурные составляющие в зависимости от растворенного в них легирующего элемента обладают различными свойствами. Отливки из углеродистой стали могут иметь ферритную и перлитную структуру. Следует отметить, что в реальных углеродистых сталях (даже низкоуглеродистых) чисто ферритной структуры не наблюдается. По границам ферритных зерен наблюдаются выделения третичного цементита, который, образуя хрупкую оболочку вокруг зерен феррита, заметно снижает его пластичность и вязкость.

Отливки из высоколегированных сталей по структуре делят на 6 классов: мартенситный, мартенсито-ферритный, ферритный, аустенито-мартенситный, аустенито-ферритный и аустенитный.

Структура отливок из высоколегированных сталей определяется содержанием легирующих элементов, углерода, режимом термообработки.

По назначению или служебным свойствам стальные отливки подразделяются на две группы:

1) отливки общего назначения из конструкционной стали;

2) отливки из стали со специальными свойствами (физическими, химическими, физико-химическими и др.).

Для первой группы определяющими характеристиками являются механические свойства (отливки этой группы изготавливают преимущественно из углеродистой и низколегированной стали). Ко второй группе относятся отливки из сталей: жаропрочных, жаростойких, коррозионно-стойких, износостойких и другого специального назначения (с особыми магнитными, электрическими и другими свойствами). Определяющими характеристиками таких сталей являются их специальные свойства.

По способу выплавки различают стали, приготовленные в печах с кислой или с основной футеровкой. Многие углеродистые и часть низколегированных сталей выплавляют в кислых печах, а средне- и высоколегированные стали – в основных печах. На практике для выплавки стали применяют:

  • кислые и основные дуговые печи (для мелких и средних отливок из углеродистых и низколегированных сталей);
  • кислые и основные индукционные печи (для мелких и средних отливок из легированных сталей);
  • кислые и основные мартеновские печи (для средних и крупных отливок из углеродистых, низко- и среднелегированных сталей);
  • установки электрошлакового переплава – ЭШП (для особо ответственных отливок специального назначения);
  • конвертеры (для малоответственных мелких и средних отливок).

Маркировка литейных углеродистых сталей, химический состав и механические свойства регламентированы ГОСТ 977-88. Для изготовления отливок предусмотрены следующие марки стали: конструкционные нелегированные – 15Л, 20Л, 25Л, 30Л, 35Л, 40Л, 45Л, 50Л; конструкционные легированные – 20ГЛ, 35ГЛ, 20ГСЛ, 20Г1ФЛ и др. Литейные свойства углеродистых сталей значительно хуже литейных свойств чугуна и других сплавов. Суммарная объемная усадка затвердевания и усадка в жидком состоянии составляет 6,0 %. Поэтому стальные отливки, как и отливки всех других сплавов, кроме чугуна, необходимо получать с прибылями. В ГОСТ 977-88 приведены химический состав и механические свойства легированных сталей после термической обработки – закалки (нормализации) и отпуска. Чаще других применяют стали, легированные кремнием, марганцем, хромом и никелем, медью и др. Марганцевые стали отличаются более высокой прочностью и особенно большей прокаливаемостью, чем углеродистые. Из них изготавливают отливки для железнодорожного транспорта, экскаваторов и других машин. У хромовых сталей (40ХЛ и др.) также повышенные по сравнению с углеродистой сталью механические свойства и прокаливаемость. Некоторые марки легированных сталей модифицируют бором, кальцием, церием и другими редкоземельными металлами (РЗМ). В результате улучшаются механические и литейные свойства стали. Состав и свойства высоколегированных сталей регламентированы ГОСТ 2176-77. Прежде всего, к ним относятся коррозионно-стойкие (нержавеющие) стали марок: 12Х18ТЛ, 15Х25ТЛ и др. Кислотоупорная хромоникелевая сталь, содержащая 18 % Cr и 8 % Ni, широко используется для отливок деталей насосов, фиттингов и т.п.

Производство отливок из алюминиевых литейных сплавов

Алюминий имеет плотность 2,7 г/см3, температуру плавления 659,8 °С, температуру кипения 2 500 °С. Фасонное литье из чистого алюминия затруднительно из-за его плохих литейных свойств и легкой окисляемости. Алюминиевые литейные сплавы широко используют в машиностроении и моторостроении, в авиационной промышленности при изготовлении всех типов летательных аппаратов. Сплавы на основе алюминия имеют высокую удельную прочность при нормальной температуре, хорошо противостоят коррозии в тяжелых атмосферных условиях, обладают высокими литейными свойствами (линейная усадка 0,8–1,4 %; объемная – 3,0–4,7 %; температура разливки 720–750°С).

Классификация алюминиевых сплавов. Для изготовления отливок используют пять групп алюминиевых сплавов (ГОСТ 1583-93): 1) Al–Si; 2) Al–Cu; 3) Al–Mg; 4) Al–Si–Cu; 5) прочие сплавы. Наибольшее применение в промышленности получили сплавы 1-й и 4-й групп.

Сплавы системы Al–Si (силумины, содержат от 5 до 13 % Si) широко применяются в авиационной, приборостроительной, машиностроительной, судостроительной промышленности. Двойные алюминиево-кремниевые сплавы имеют невысокую прочность, для ее увеличения вводят магний, например сплав AЛ 9 (6–8 % Si; 0,2–0,4 % Mg). Магний образует с кремнием химическое соединение, упрочняющее сплав в процессе ТО (термообработки). Вредной примесью для силуминов является железо, образуя хрупкие тройные алюминий–железо–кремний фазы, кристаллизующиеся в виде пластин, железо существенно снижает пластические свойства сплавов. Для нейтрализации вредного влияния железа в сплав вводят марганец, десятые доли марганца способствуют переводу выделений железистой составляющей в более благоприятную (компактную) форму, например сплав АЛ 4 (8,0–10,5 % Si; 0,17–0,30 % Mg; 0,2–0,5 % Mn). При литье силуминов в разовые низкотеплопроводные формы наблюдается грубое выделение кремния в эвтектике (11,7 % Si), поэтому сплавы системы Al–Si модифицируют натрием (0,01–0,1 % от массы расплава). В присутствии натрия эвтектический кремний выделяется в виде тонкодисперсных пластин, что благоприятно отражается на пластических свойствах.

Сплавы системы Al–Si–Cu используют для изготовления деталей, обладающих твердостью и прочностью, отвечающих требованиям по чистоте поверхности (корпуса различных приборов, автомобильные и тракторные поршни, детали авиадвигателей – сплав АЛ 7-4).

Плавка алюминиевых сплавов. Сплавы на основе алюминия склонны к газопоглощению и окислению. Особенно энергично в них растворяется водород, что способствует получению отливок с газовой пористостью и раковинами. Предохраняют алюминиевые сплавы от окисления и поглощения водорода покровными флюсами (смесь хлоридов натрия и калия, например, 45 % NaCl + 55 % KCl. Расход флюса составляет 2 % от массы шихты. Рафинирование (очистку) алюминиевых сплавов от взвешенных неметаллических включений и водорода осуществляют продувкой инертными газами (Ar, He) или активным хлором, а также обработкой хлоридами марганца, цинка, титана. Так, при пропускании газов (расход 0,2–0,8 % от массы металла) через расплав они оказывают флотирующее действие на взвешенные включения; пузырьки рафинирующего газа выносят включения на поверхность расплава. Так как давление атомарного водорода внутри пузырька рафинирующего газа равно нулю, то растворенный в металле водород диффундирует внутрь пузырька и выносится за пределы расплава. Сплавы, содержащие более 6 % Si, перед заливкой в разовые формы подвергают модифицированию натрием (несколько сотых долей натрия от массы расплава), вследствие чего измельчаются выделения кремния и повышаются механические свойства сплавов. Плавку алюминиевых сплавов чаще всего производят в электрических индукционных печах.

Производство отливок из магниевых литейных сплавов

Магний имеет плотность 1,7 г/cм3, температуру плавления 651°С, температуру кипения 1 120°С. Химический состав и механические свойства магниевых литейных сплавов регламентирует ГОСТ 2856-79, маркируют сплавы буквами МЛ и числом, обозначающим порядковый номер, в конце маркировки могут ставиться буквы «ОН» – общего назначения и «ПЧ» – повышенной чистоты. Из конструкционных материалов магний является самым легким. В чистом виде магний характеризуется низкой коррозионной стойкостью, недостаточной однородностью свойств и легкой воспламеняемостью. Отливки из магниевых литейных сплавов применяются главным образом в авиастроении и транспортном машиностроении, т.е. там, где они позволяютснизить собственную массу транспортных средств (усадка линейная 1,2–1,9 %; объемная – 3,0–5,7 %).

Классификация магниевых сплавов. Условно магниевые литейные сплавы могут быть разделены на группы:

1) Mg–Mn (МЛ 2 – редко применяются из-за низких механических свойств);

2) Mg–Al–Zn (МЛ 3, МЛ 4 и др.);

3) Mg–Zn–Zr (МЛ 8, МЛ 15 и др.);

4) сплавы, легированные редкоземельными элементами (индием, церием) – МЛ 9, МЛ 10 и др.;

5) сплавы, содержащие торий (МЛ 14).

Сплавы второй группы широко применяются, они идут для производства высоконагруженных отливок, работающих в тяжелых атмосферных условиях с высокой влажностью. Сплавы третьей группы имеют высокие механические свойства и хорошо обрабатываются резанием. Отливки из этой группы сплавов могут работать при температуре 200–250 °С. Сплавы четвертой группы используются как жаропрочные, отливки из этих сплавов работают в условиях больших нагрузок при температуре 250–300°С.

Сплавы пятой группы еще более жаропрочные. Отливки из таких сплавов работают при температуре 350°С. Сплавы имеют удовлетворительную коррозионную стойкость и высокое сопротивление ползучести.

Плавка магниевых сплавов сопряжена с рядом трудностей. Сплавы интенсивно окисляются. Этот процесс легко переходит в горение. В отличие от алюминиевых сплавов на поверхности магниевого расплава образуется неплотная (рыхлая) пленка окиси, не предохраняющая расплав от окисления. Для предупреждения окисления и возгорания при плавке магниевых сплавов применяют различные покровные флюсы на основе хлористых солей магния, калия и бария (расход 10 % от массы шихты). Магниевые сплавы плавят в тигельных, отражательных и индукционных печах. Рафинирование от неметаллических включений производят флюсом или газами (хлором, гелием, аргоном). Перед рафинированием в сплав вводят бериллий (0,001–0,004 % от массы расплава). Бериллий образует прочную окисную пленку, предохраняющую расплав от загорания. Модифицирование магниевых сплавов, содержащих алюминий, осуществляют перегревом или введением углеродсодержащих веществ.

Производство отливок из медных сплавов

Медь – металл розово-красного цвета, очень ковкий и тягучий (плотность 8,94 г/см3, для сплавов 7,5–10,7 г/см3; температура плавления 1 083 °С, кипения 2360 °С; усадка линейная 1,44–2,5 %; усадка объемная 6,4 %). Широкое применение меди обусловлено высокой электро- и теплопроводностью, химической устойчивостью и другими ценными качествами. Чистуюков и проволоки методами пластической деформации.

Классификация медных сплавов. Для изготовления отливок используются три группы медных сплавов: оловянные бронзы, безоловянные бронзы и латуни. Механические свойства литейных бронз регламентирует ГОСТ 613-79. Оловянные бронзы широко применяются для изготовления арматуры, подшипников, шестерен, втулок, работающих в условиях истирания, повышенного давления воды и водяного пара. Оловянные бронзы обладают хорошими литейными свойствами, что позволяет получать при литье в землю сложные по конфигурации отливки. Характерная особенность этой группы сплавов – большой интервал между температурами ликвидуса и солидуса (150–200 °С), что обусловливает образование в отливках рассеянной усадочной пористости. Бронзы с высоким содержанием олова (Бр.010; Бр.0Ц 10-2; Бр.0Ф 10-1) ввиду его высокой стоимости и дефицитности применяют для отливок ответственного назначения. Вредными примесями являются алюминий и кремний. Сотые доли процентов этих элементов снижают механические свойства бронз и способствуют усилению поглощения водорода при плавке. С увеличением содержания олова прочностные свойства возрастают. Легирование бронз цинком повышает литейные свойства, свинец улучшает антифрикционные свойства, фосфор повышает износостойкость и улучшает жидкотекучесть.

Безоловянистые бронзы используются как заменители оловянных. По механическим, коррозионным и антифрикционным свойствам они превосходят оловянные. Среди сплавов этой группы широко применяют алюминиевые бронзы, они используются для изготовления гребных винтов крупных судов, тяжелонагруженных шестерен и зубчатых колес, корпусов насосов и других отливок. Механические, технологические и эксплуатационные свойства алюминиевых бронз улучшаются при легировании железом, марганцем, никелем. Марки алюминиевых бронз: Бр.АМn 9-2Л, Бр.АЖ9-4Л и др. Свинцовые бронзы Бр.С 30, Бр.СН 60-2,5 обладают высокой износостойкостью при трении в условиях больших удельных нагрузок и скоростей скольжения. Поэтому свинцовые бронзы применяют как заменители оловянных при изготовлении вкладышей подшипников. Особенность этих бронз – сильная ликвация свинца. Дисперсное распределение свинца в бронзе может быть достигнуто большими скоростями охлаждения.

Латуни – сплавы меди с цинком (до 50 % Zn). По химическому составу латуни разделяются на двойные (простые), т.е. состоящие из меди и цинка, и многокомпонентные (сложные), в состав которых кроме цинка входят другие компоненты (Si, Al, Mn, Pb). Кремнистые латуни ЛК 80-3 склонны к поглощению водорода и образованию газовой пористости. Эти латуни обладают высокой жидкотекучестью, хорошей свариваемостью, легко обрабатываются резанием. Они применяются для изготовления отливок, работающих под повышенным воздушным и гидравлическим давлением; деталей, работающих в агрессивных средах. Алюминиевые латуни ЛАЖ 60-1-1Л и другие обладают коррозионной стойкостью в морской воде и применяются в судостроении. Марганцовистые латуни используются для изготовления жаростойких и коррозионно-стойких отливок. Свинцовистые латуни применяются как антифрикционный материал, свинец также улучшает обрабатываемость резанием.

Для плавки литейных медных сплавов используют отражательные, дуговые и индукционные печи, футерованные шамотом, динасом, кварцем или графитом. При плавке на воздухе медь интенсивно растворяет кислород, с образованием окислов. Взаимодействие с газами интенсифицируется с повышением температуры перегрева. Выше 1 150–1 200°С перегрев недопустим. Для защиты от окисления применяют флюсы (буру, соду, фториды, древесный уголь). Рафинируют медные сплавы хлористым марганцем, после чего модифицируют и разливают в формы при 1 150°С.

Контрольные вопросы:

1. Какова роль эвтектического превращения в формировании структуры и свойств чугуна?

2. Как влияет химический состав отливок на свойства чугуна?

3. Как влияет режим охлаждения отливок на структуру и свойства чугуна?

4. Как классифицируют отливки из стали?

5. Как маркируют литейные углеродистые и легированные стали?

6. Как классифицируют отливки из сплавов на основе алюминия?

7. Какие жаропрочные сплавы на основе магния вы знаете?

8. Нужно ли рафинировать и модифицировать сплавы на основе алюминия?

9. Каковы особенности плавки магниевых сплавов?

10. Какова классификация и область применения сплавов на основе меди?

Лекция 3

Формовочные материалы, смеси и краски

Краткая характеристика исходных формовочных материалов. Классификация, составы и свойства формовочных и стержневых смесей. Виды красок и области их применения. Оборудование для подготовки исходных формовочных материалов и для приготовления формовочных и стержневых смесей.

Краткая характеристика исходных формовочных материалов

К формовочным материалам относятся все материалы, используемые для изготовления разовых форм и стержней.

Исходные формовочные материалы делят на две группы:

1) основные:

  • огнеупорный наполнитель (кварцевый песок, циркон, магнезит и др.);
  • связующие материалы, обеспечивающие прочность связи частиц наполнителя (глина, жидкое стекло, лигносульфонат технический, смолы и др.);

2) вспомогательные материалы – различные добавки (торф, опилки, уголь и др.), придающие смесям определенные свойства (газопроницаемость, податливость, непригораемость и т.д.).

Наполнители. К наполнителям относятся кварцевый песок, электрокорунд, шамот и другие материалы.

Кварцевые пески. В качестве огнеупорной основы формовочных и стержневых смесей наибольшее распространение получил кварцевый песок из-за высокой огнеупорности, прочности и твердости, дешевизны.

Основу песков составляет кремнезем SiO2, имеющий температуру плавления 1 713 °С, твердость (по шкале Мооса) 7, плотность 2,5–2,8 г/см3. Наряду с кремнеземом в формовочных песках присутствуют вредные примеси (полевой шпат, слюда, окислы алюминия, железа и другие соединения), ухудшающие свойства песка.

В соответствии с ГОСТ 2138-91 формовочные пески в зависимости от массовой доли глинистой составляющей (обломков зерен кварца и других минералов размером менее 0,02 мм) подразделяют на кварцевые, тощие и жирные. Кварцевые пески содержат до 2 % глинистой составляющей, тощие пески – от 4 до 12 %, жирные пески – от 12 до 50 %.

Кварцевые пески используют для изготовления форм и стержней при получении отливок из стали и чугуна, тощие и жирные – для изготовления форм при производстве отливок из цветных сплавов и мелких чугунных отливок. Тощие пески можно применять для приготовления формовочных смесей при производстве чугунных и стальных отливок с использованием противопригарных покрытий.

Электрокорунд. Безводный оксид алюминия существует в нескольких модификациях. Плотность корунда составляет от 3,98 до 4,01 г/см3 в зависимости от наличия примесей. Температура плавления 2 050 °С. Твердость 9 по шкале Мооса. Электрокорунд широко применяют при литье титановых сплавов по выплавляемым моделям.

Циркон (силикат циркония) состоит из ZrО2 (63 %) и SiО2 (32 %). Это природный минерал плотностью 4,6 г/см3. Температура плавления 2 600 °С. Твердость по шкале Мооса 7,5. Циркон используют в качестве наполнителя облицовочных смесей и противопригарных красок при изготовлении отливок из стали и чугуна.

Дистенсиллиманит состоит из природных алюмосиликатных материалов – Al2О3 (57 %) и SiО2 (39 %). Плотность 3,5 г/см3. Огнеупорность 1 830°С. Его применяют главным образом при литье по выплавляемым моделям, а также в качестве наполнителя облицовочных смесей и противопригарных красок при изготовлении особо сложных стальных отливок при литье в песчаные формы.

Промышленные огнеупорные отходы. Наиболее широко используют отработанную смесь – собственные отходы литейных цехов, которые могут использоваться повторно (песчано-глинистые смеси).

У отработанной песчано-глинистой смеси восстанавливают частично свойства следующими последовательными операциями: раздавливанием комков, магнитной сепарацией, аэрацией. После подготовки ее используют как основной огнеупорный материал с небольшими добавками свежих материалов (5–10 %) в единых смесях. Качество отработанной смеси зависит от свойств исходных компонентов.

Смеси на выгорающих связующих (масле, декстрине и пр.) также могут использоваться повторно. Жидкостекольные и смоляные смеси повторно использовать нельзя, так как они представляют собой твердоспеченные куски различных размеров.

Связующие материалы должны обладать следующими свойствами:

  • равномерно распределяться по поверхности формовочных материалов в течение определенного времени, что обеспечивает постоянство свойств смесей и красок;
  • придавать высокие свойства формовочным и стержневым смесям;
  • не быть газотворными при сушке и заливке;
  • не снижать огнеупорность формовочного материала и не увеличивать его пригораемость;
  • быть дешевым, недефицитным и безвреденым для окружающих.

Связующие материалы делятся на неорганические и органические. Неорганические связующие хорошо выдерживают воздействие высоких температур, но имеют низкую податливость и выбиваемость. Органические связующие при высоких температурах сравнительно легко разлагаются и обеспечивают хорошую податливость и выбиваемость.

Из неорганических связующих материалов наибольшее распространение получили формовочные глины, этилсиликат, жидкое стекло.

Формовочные огнеупорные глины представляют собой горные породы, которые состоят из тонкодисперсных частиц водных алюмосиликатов, обладающих высокой связующей способностью и термохимической устойчивостью, а также пластичностью после увлажнения.

По содержанию глинистых минералов формовочные глины делят на три вида:

 

Вид глины

Обозначения вида

Основной породообразующий минерал

Бентонитовая

Б

Монтмориллонит

Каолиновая и каолино-гидрослюдистая

К

Каолинит и каолинит с гидрослюдой

Полиминеральная

П

Любой глинистый минерал

 

 

Кроме указанных выше минералов глины содержат ряд примесей (кварц, полевые шпаты, слюды, карбонат, гипс, окислы и сульфиды железа), ухудшающие качество глин.

В соответствии с ГОСТ 3226-93 «Глины формовочные огнеупорные» глины классифицируют в зависимости от их химических и физических показателей.

Этилсиликат является основой для приготовления связующего при литье по выплавляемым моделям. Он представляет собой смесь этиловых эфиров ортокремниевой кислоты. Это прозрачная жидкость с температурой кипения 165 °С, плотностью 0,98–1,05 г/см3. Этилсиликат состоит из эфиров разной молекулярной массы. Для придания этилсиликату свойств связующего его подвергают гидролизу.

В России производят этилсиликат двух марок – ЭТС-32 и ЭТС-40. Число, указанное в марке, соответствует среднему условному содержанию диоксида кремния (в процентах по массе).

Жидкое стекло (ГОСТ 13078-81) является водным раствором силиката натрия. Его получают сплавлением кварцевого песка и соды при температуре 1 400–1 500°С с последующим растворением в воде до плотности 1,36–1,50 г/см3, осуществляемым в автоклавах.

Связующая способность жидкого стекла определяется его модулем, который равен М = (SiO2 / Na2O)·1,032, где SiO2 – массовая доля диоксида кремния; Na2O – массовая доля оксида натрия; 1,032 – соотношение молярных масс оксида натрия и диоксида кремния.

В зависимости от значения модуля различают три марки жидкого стекла: А, Б и В. Наибольшее распространение получило жидкое стекло марNa2О – 10–12 %. Чем выше модуль жидкого стекла, тем выше прочность и ниже живучесть смеси.

Упрочнение форм осуществляется тремя способами:

  • воздушной сушкой в течение 2–8 ч;
  • тепловой сушкой при температуре 220–250 °С в течение 30–60 мин;
  • химической сушкой (продувкой углекислым газом, введением ферро-хромового шлака, эфиров угольной кислоты).

Металлофосфатные связующие используют для изготовления керамических оболочек при литье по выплавляемым моделям, противопригарных покрытий и как водное связующее для стержней, отверждаемых тепловой сушкой. Наибольшее применение нашло алюмохромофосфатное связующее – кислый фосфорнокислый хром-алюминий. Связующее представляет собой вязкий раствор темно-зеленого цвета.

Кремнийорганические связующие широко применяются в производстве точных отливок по выплавляемым моделям. Лучшим из них является этилсиликат. Для противопригарных покрытий используют термостойкие кремний кремнийорганические лаки (КО-928, КО-921 и др.) и кремнийорганические смолы (КО-9, КО-917).

Кристаллогидратные связующие – это водорастворимые кристаллогидратные соли, сульфат магния, гипс и цемент.

Стандарты на формовочные материалы. Качество отливок в значительной степени зависит от свойств формовочных материалов, поэтому необходим их тщательный контроль. Контроль качества формовочных материалов осуществляется в цеховой или заводской лаборатории по стандартным методикам. Стандарты (ГОСТ 23409.0-78 – ГОСТ 23409.26-78) на методы испытаний формовочных песков, формовочных и стержневых смесей включают 26 видов контроля: содержания примесей (оксидов кальция, магния, железа, титана, алюминия), влаги, прочности смесей при комнатной и высоких температурах, газопроницаемости, осыпаемости, гигроскопичности, текучести при динамическом и статическом уплотнениях, газотворности.

Вспомогательные материалы. К вспомогательным материалам относятся:

  • противопригарные материалы (например, пылевидный и гранулированный уголь, графит и др.);
  • разделительные материалы (тальк, графит и др.);
  • материалы, увеличивающие податливость стержней и форм;
  • материалы, снижающие прилипаемость смеси к стенкам стержневого ящика или модели;
  • материалы, улучшающие технологические свойства смесей (прочность, текучесть, теплопроводность и др.);
  • специальные экзотермические добавки;
  • отвердители (шлак феррохромовый, шлам нефелиновый, газ углекислый и др.) – вещества, благодаря взаимодействию которых со связующим происходит быстрое отверждение смесей без тепловой сушки;
  • катализаторы – вещества (например, ортофосфорная кислота), которые способствуют ускорению химических реакций только вследствие своего присутствия, сами же не претерпевают изменений;
  • пенообразователи – используются в наливных самотвердеющих смесях (например, контакт черный нейтрализованный рафинированный).

Классификация, составы и свойства формовочных и стержневых смесей

Классификацию формовочных смесей осуществляют по нескольким признакам.

По роду заливаемого металла выделяют смеси для получения отливок из сталей, чугуна и цветных сплавов.

По назначению смеси могут быть формовочными и стержневыми. Стержневые смеси отличаются от формовочных газопроницаемостью, прочностью и другими свойствами, так как стержни, установленные в литейной форме, подвергаются более сильному тепловому и динамическому воздействию металла, чем форма.

По характеру использования формовочные смеси делят на единые, облицовочные, наполнительные.

Облицовочную смесь, оформляющую рабочую поверхность формы толщиной 15–30 мм и непосредственно контактирующую с расплавом, тщательно готовят из свежих высококачественных исходных материалов. Остальной объем опоки заполняют наполнительной смесью, состоящей в основном из оборотной смеси с небольшими добавками свежих исходных материалов. Наполнительная смесь значительно дешевле и проще в приготовлении, чем облицовочная. К ней предъявляются требования только по газопроницаемости и прочности, которые должны быть не ниже, чем у облицовочной смеси.

Использование облицовочных и наполнительных смесей рационально в условиях мелкосерийного и единичного производства при изготовлении средних и крупных отливок. Условия машинной формовки в серийном и массовом производстве определяют необходимость использования единых формовочных смесей, которые изготовляют из наиболее стабильных по составу и свойствам формовочных песков и прочносвязующих глин.

По состоянию формы перед заливкой выделяют смеси для форм, заливаемых во влажном и в сухом состояниях.

Составы и свойства формовочных и стержневых смесей. В литейном производстве применяются самые разнообразные по составу и свойствам, смеси, которые используют в зависимости от требований к отливке и возможностей производства. При выборе состава смеси для формы и стержня учитывают следующие факторы: смеси должны обеспечить требуемое качество отливки, быть дешевыми, недефицитными, безвредными.

Наиболее дешевыми являются естественные песчано-глинистые смеси (ПГС). Песчано-глинистые искусственные смеси на обогащенных песках, высокосортных бентонитах, со специальными добавками уже на порядок дороже естественных и выше качеством. Но и их применение ограничивается массой, сложностью отливок. Поэтому кроме ПГС используют жидкостекольные, смоляные, сульфитные, масляные, фосфатные и другие смеси. Такие смеси применяют в основном в качестве стержневых, облицовочных; реже в качестве единых и никогда – наполнительных.

Смоляные смеси имеют самые высокие технологические свойства, но они дорогие и токсичные. Жидкостекольные смеси обладают меньшей податливостью и худшей выбиваемостью, чем смоляные, но они дешевле и безвреднее. В настоящее время им отдают предпочтение, так как появились новые процессы формообразования, позволяющие улучшить их свойства.

Сульфитные смеси (на основе лигносульфонатов) являются дешевыми, безвредными и для изготовления легких, не очень сложных отливок могут полноценно заменить смоляные смеси (горячетвердеющие смеси – ГТС, пластичные самотвердеющие смеси – ПСС). Фосфатные смеси уступают по свойствам смоляным смесям, но во многих случаях заменяют их.

Виды красок и области их применения

Противопригарные покрытия увеличивают поверхностную прочность, уменьшают осыпаемость и термохимическую стойкость форм и стержней, обеспечивая получение чистых отливок.

Покрытия бывают водными, самовысыхающими и самотвердеющими.

Водные покрытия применяют обычно для форм и стержней, подвергаемых сушке. Эти покрытия приготовляют из паст, которые поставляются централизованно.

Применение самовысыхающих и самотвердеющих покрытий позволяет исключить сушку формы и или стержня. Их используют для форм и стержней из самотвердеющих смесей.

Если жидкое покрытие не обеспечивает достаточной чистоты отливки, то для натирки или облицовки стержней применяют пасты, которые наносятся вручную и поэтому используются достаточно редко, в основном при изготовлении крупных стальных отливок.

Оборудование для подготовки исходных формовочных материалов

и для приготовления формовочных и стержневых смесей

Формовочные и стержневые смеси готовят в смесеприготовительном отделении литейного цеха, где размещаются склад формовочных материалов, оборудование для предварительной подготовки формовочных материалов и смесеприготовительные установки.

Подготовка свежих формовочных материалов состоит обычно в сушке песка и глины, просеивании песка, помоле глины и угля, приготовлении глинистой или глинисто-угольной суспензии.

Сушку песка и глины производят в сушильных печах при температуре 150–250°С. Просушенные пески просеивают на механических ситах различной конструкции для отделения крупных частиц и посторонних примесей.

Для дробления огнеупорной глины и размалывания глины и угля применяют дробилки и мельницы различных типов. Использование суспензии исключает операции сушки и размола глины.

Отработанная формовочная смесь перед ее повторным использованием проходит следующие операции обработки: разминание комьев смеси после выбивки сухих форм, отделение металлических частиц (крючков, шпилек, застывших капель металла) с помощью магнитных сепараторов, просеивание на механических ситах.

Приготовление смесей. Для достижения высокого качества смесей необходимы точная дозировка исходных материалов, тщательное их перемешивание, вылеживание готовой смеси с целью выравнивания влажности и разрыхление смеси.

Для дозирования применяют весовые и объемные дозаторы. Последние используют для взвешивания жидких составляющих – связующих и воды.

При перемешивании обеспечивается равномерное распределение всех компонентов в объеме смеси и обволакивание зерен песка тонкой пленкой связующего. Для приготовления формовочных и стержневых смесей используют литейные смесители каткового, лопастного и шнекового типов.

В автоматизированных цехах применяют смесители непрерывного действия, в которых загрузка, перемешивание и выгрузка готовой смеси ведутся одновременно, непрерывно. К смесителям непрерывного действия относятся высокопроизводительные центробежные (или маятниковые) смешивающие бегуны с катками, вращающимися в горизонтальной плоскости.

Приготовленные песчано-глинистые смеси передаются из смешивающих бегунов в бункера-отстойники, где смесь выдерживается 2-3 ч с целью выравнивания влажности и стабилизации свойств по всему объему. Затем уплотненную от вылеживания смесь дополнительно разрыхляют, пропуская ее через специальные установки – разрыхлители, лопастные (аэраторы) и дисковые (дезинтеграторы). Разрыхленная смесь направляется в формовочное отделение конвейером к расходным бункерам.

Лопастные и шнековые смесители применяют для приготовления пластичных (например, песчано-смоляных) и жидкоподвижных самотвердеющих смесей, а также сыпучих смесей, используемых для изготовления оболочковых форм и стержней. Такие смесители обеспечивают равномерное распределение составляющих и хорошее их перемешивание, но не создают оболочки вокруг зерен из-за отсутствия перетирающего действия на смеси.

Механизация и автоматизация смесеприготовительного отделения. В литейных цехах массового производства применяются автоматические линии формовки, включающие в себя полностью автоматизированные смесеприготовительные установки.

В цехах с поточным механизированным производством отливок, потребляющих большое количество одинаковых по составу смесей, приготовление их производят в центральном смесеприготовительном отделении, где машины, транспортеры и устройства для переработки исходных материалов, приготовления смесей и передачи их к местам изготовления форм и стержней объединены в единую центральную смесеприготовительную систему (ЦСС) с автоматическим управлением.

Контрольные вопросы и задания

1. По каким показателям классифицируют формовочные пески?

2. Расскажите о классификации глин.

3. Каким образом классифицируют связующие материалы?

4. Приведите примеры вспомогательных материалов, расскажите об их назначении.

5. По каким признакам классифицируют формовочные смеси?

6. Почему требования, предъявляемые к стержневым смесям, более высокие, чем требования, предъявляемые к формовочным смесям?

7. Каково назначение красок?

8. Какое оборудование используют для подготовки исходных формовочных материалов?

9. Какое оборудование применяют для приготовления формовочных и стержневых смесей?

10. В каком отделении литейного цеха готовят формовочные и стержневые смеси?

Лекция 4

Технология изготовления отливок в разовых песчаных формах

Модельно-опочная оснастка. Элементы литниковой системы, их взаимное расположение. Технология получения форм в разовых песчано-глинистых формах.

Модельно-опочная оснастка

Под модельно-опочной оснасткой понимают набор элементов, необходимых для образования при формовке рабочей полости литейной формы.

Литейная модель служит для образования в литейной форме отпечатка, соответствующего конфигурации и размерам отливки. По конструкции, которая обусловливается удобством формовки, модели подразделяют на неразъемные и разъемные (рис. 1.1).

Неразъемные модели (рис. 1.1, а) применяют при получении несложных по конфигурации отливок, преимущественно заформовываемых в одной половине формы. Разъемные модели (рис. 1.1, б) широко используют припроизводстве отливок более сложной и разнообразной конфигурации, когда модель формуется в двух опоках и более. В единичном и мелкосерийном производстве, когда оформлять выступающие элементы отливок стержнями экономически нецелесообразно, в моделях предусматривают отъемные части, которые остаются на рабочей поверхности формы после извлечения из нее модели, затем извлекают и отъемные части. Крепление отъемных частей на основании модели производят стальными гвоздями или шипами со скосами.

Точное соединение частей разъемных моделей осуществляется с помощью деревянных шипов или металлических дюбелей. Для легкого извлечения из полуформы боковые поверхности моделей снабжают уклонами. Удобство извлечения модели из полуформы при ручной формовке достигается с помощью металлических приспособлений, закрепляемых на модели, которые называют подъемами.

Подмодельные плиты служат для образования в форме плоскостей разъема. При ручной формовке применяют деревянные подмодельные плиты, склеиваемые из строганных досок, а при машинной – металлические фасонные, обычно отливаемые из серого чугуна, служащие основой для монтажа модельных плит.

Модельные плиты применяют при машинной формовке. Модельные плиты представляют собой тщательно обработанные металлические фасонные плиты с моделями отливок и элементов литниковых систем, а также двумя штырями, предназначенными для фиксации устанавливаемых опок.

К опочной оснастке относят опоки, штыри, крепежные приспособления, литейные жакеты и подопочные плиты.

Опоки (рис. 1.2) представляют собой жесткие металлические рамки, служащие для набивки и удержания смеси при изготовлении литейных форм, удобства их транспортирования на участки заливки и выбивки. Опока придает форме повышенную прочность, необходимую для противодействия давлению заливаемого в нее литейного расплава.

Размеры опок регламентируются ГОСТами и колеблются в пределах (в свету) от 500×400 до 3 000×2 500 мм при диапазоне высот 150–1 500 мм. По конфигурации опоки подразделяют на прямоугольные, круглые и фасонные; в зависимости от размеров и массы – на ручные и крановые.

Крепежные приспособления предназначены для надежного соединения полуформ при подготовке формы к заливке, что предупреждает вытекание заливаемого расплава по плоскости ее разъема.

Подопочные плиты предназначены для установки на них готовых литейных форм, направляемых от формовочных машин на заливку и выбивку с помощью напольного тележечного конвейера в условиях массового и крупносерийного производства.

Элементы литниковой системы, их взаимное расположение

Литниковой системой называют совокупность каналов и элементов литейной формы, служащих для подвода расплавленного металла в рабочую полость формы, обеспечения благоприятных условий ее заполнения, а также питания отливки при затвердевании.

Основные элементы литниковой системы представлены на рис. 1.3.

Каждый из элементов литниковой системы имеет свое назначение, неправильное изготовление его может стать причиной брака отливки. Поэтому при серийном производстве отливок выгоднее применять заранее изготовленные модели литниковой системы, имеющие расчетную площадь и правильный профиль.

Литниковая чаша и воронка являются резервуарами, служащими для приема металла из разливочного устройства и подачи его через стояк и другие элементы литниковой системы в рабочую полость формы.

В небольших формах верхняя часть стояка заканчивается небольшой воронкой, выполняющей роль чаши. Литниковая воронка обычно имеет форму усеченного конуса, расширяющегося вверх, что облегчает при заливке попадание в нее струи металла.

Стояк представляет собой вертикальный (реже наклонный) прямой или изогнутый канал, служащий для подачи расплава из литниковой чаши (или воронки) к другим элементам литниковой системы: зумпфу, шлакоуловителям, питателям. Для удобства удаления из формы стояки делают коническими, расширяющимися к верху.

Зумпф выполняется в конце стояка в виде полусферы и служит для смягчения удара падающей струи расплава, уменьшения разбрызгивания его, плавного изменения направления движения потока.

Шлакоуловитель – элемент литниковой системы для задерживания шлака, кусочков формовочной смеси и для подвода расплавленного металла из стояка к питателям. Частицы шлака, попадая с металлом в шлакоуловитель, расположенный выше питателей, всплывают и остаются в нем, не проникая в полость формы.

Питатель – элемент литниковой системы для подвода расплавленного металла в полость литейной формы. Питатели чаще всего располагают в нижней полуформе под шлакоуловителем.

Выпор – элемент литниковой системы для вывода газов из формы при заливке, контроля заполнения формы расплавленным металлом, питания отливки в момент ее затвердевания, смягчения удара струи металла в верхнюю стенку полости формы в конце ее заливки, для слива холодного металла из верхней части полости формы.

Прибыль. Во время усадки металла в форме в стенках отливки могут образовываться усадочные раковины, которые возникают там, где металл долгое время остается в жидком состоянии, т.е. в толстых сечениях отливки. В тонких сечениях отливки раковины образоваться не могут, потому что возникающая в процессе затвердевания усадка компенсируется металлом из соседних, более толстых сечений отливки, находящихся еще в жидком состоянии.

Если во время затвердевания отливки в то место, где происходит образование усадочной раковины, своевременно добавлять жидкий металл – питать отливку, то усадочной раковины в отливке не будет. Подобный прием в производстве отливок используется как средство борьбы с усадочными раковинами. Питание отливки в момент ее усадки осуществляется за счет жидкого металла элемента литниковой системы, устраиваемого в форме над той частью отливки, где возможно образование раковины. Такую полость в форме называют прибылью. Прибыль может питать отливку лишь в том случае, если металл в ней в момент образования раковины в отливке еще жидкий и затвердевает после питаемого узла, т.е. прибыль должна быть больше той части отливки, которую она питает.

Типы литниковых системы. Различают несколько характерных способов подвода литниковой системы (рис. 1.4).

При сифонной заливке литники подводят к нижней части отливки. Сифонная заливка обеспечивает спокойное заполнение полости формы без разбрызгивания. Однако пока расплав достигает верхней части формы, он успевает остыть, что ухудшает питание отливки из прибылей и может привести к появлению раковин в отливке.

При заливке сверху через литник, подведенный к верхней части отливки, форма заполняется в направлении, противоположном направлению выхода газов, вследствие чего часть газов может попасть в отливку. Кроме того, расплав, падая на дно формы, разбрызгивается, сильнее окисляется и может размыть форму в местах падения. Преимуществом заливки сверху является поступление горячего металла в верхнюю часть отливки и в прибыль.

Для заливки в середину литники подводят к середине отливки, на уровне 1/2 ее высоты. В этом случае нижняя часть отливки заполняется как при заливке сверху, а верхняя – как при заливке снизу. Практикуется и заполнение литейной формы через несколько литников. Например, используется расширяющаяся ступенчатая литниковая система, суммарная площадь поперечного сечения литников которой больше площади поперечного сечения стояка, благодаря чему жидкий металл, поднявшись до среднего уровня, вновь поступает в стояк. Возникает циркуляция, показанная стрелками. Обратное движение имеет место, если ступенчатая система запертая.

Ступенчатая литниковая система может быть разделена на несколько отдельных стояков, заполнение которых происходит в соответствующем порядке.

Сифонная заливка металла через ступенчатую литниковую систему обеспечивает благоприятное распределение температуры в отливке.

Технология получения отливок в разовых песчано-глинистых формах

Общая схема технологического процесса изготовления отливок в песчаных формах представлена на рис. 1.5.

В литейном производстве роль основного инструмента для изготовления отливок выполняет литейная форма. Она представляет собой систему элементов, образующих рабочую полость, при заливке которой расплавленным металлом формируется отливка.

Распространенность способа литья в песчаные формы связана с его дешевизной, применением для изготовления отливок различных сплавов – легких и тяжелых, цветных, чугунов и сталей, а также со сравнительно невысокими затратами на оснастку и приспособления.

Изготовление отливок в разовых песчаных формах наряду со многими достоинствами обладает и рядом недостатков. Для получения каждой отливки необходимо выполнить ряд трудоемких, даже в условиях механизированного производства, операций. При заливке песчаных форм расплавом и охлаждении в них отливок происходят процессы испарения влаги и выгорания связующих, при формовке и выбивке отливок неизбежно образование пыли, что вызывает необходимость соблюдения специальных мер по технике безопасности и охране окружающей среды. Сами формы значительно подвержены силовому, тепловому и химическому воздействию заливаемого расплава, нередко приводящему к снижению размерной точности отливок и образованию на их поверхности трудноудаляемой корки пригара, состоящей из приварившегося формовочного материала и продуктов его взаимодействия с расплавом.

 

Контрольные вопросы и задания

1. Какая оснастка используется при изготовлении разовых песчано-глинистых форм?

2. Для чего служит литейная модель?

3. Как классифицируют литейные модели?

4. Какие технологические операции необходимо выполнить при формовке?

5. В чем отличие формовки по неразъемной и разъемной моделям?

6. Что такое литниковая система?

7. Какие элементы литниковой системы вы знаете?

8. Расскажите о назначении каждого элемента литниковой системы.

9. Каково назначение прибыли?

10. Каково назначение выпора?

11. Какие дефекты возможны в отливках из-за избытка влаги в смеси?

12. Перечислите способы подвода литниковой системы к полости формы.

13. Назовите достоинства и недостатки способа литья в разовые формы.

Лекция 5

Механизация и автоматизация процесса изготовления форм и стержней

Формовочные и стержневые машины. Поточно-литейная линия.

Формовочные и стержневые машины

В формовочных отделениях обычно используется способ изготовления форм на двух формовочных машинах с односторонними модельными плитами в двух парных опоках: одна для нижней и другая для верхней полуформы. Наиболее распространенными методами уплотнения формовочной смеси являются: встряхивание, прессование, встряхивание с подпрессовкой, пескометный, пескодувный.

Встряхивание. На рис. 1.6 приведена схема часто встречающегося на практике пневматического встряхивающего механизма с подъемным поршнем.

При впуске воздуха (рис. 1.6, а) подъемный поршень поднимается до упора в крышку цилиндра и поднимает на себе прилитый к нему (сделанный заодно с ним) встряхивающий цилиндр. При этом воздух по каналам, показанным на схеме, поступает во встряхивающий цилиндр, и начинается встряхивание, во время которого подъемный поршень продолжает оставаться в верхнем положении. Удары встряхивающего стола передаются на фундамент машины через воздушную подушку, находящуюся в цилиндре под подъемным поршнем.

Часть энергии удара при этом поглощается упругой деформацией подушки. Таким образом, удары, передающиеся на фундамент, смягчаются.

На рис. 1.7 дана схема пневматического встряхивающего механизма с отсечкой и расширением воздуха в цилиндре. Когда поршень пройдет из положения «а» (рис. 1.7, а) путь наполнения, прекращается впуск сжатого воздуха в цилиндр, т.е. происходит отсечка воздуха. Но в этот момент выхлопное отверстие еще не начнет открываться. Происходит расширение сжатого воздуха. Если же в момент закрытия впускного отверстия (в момент отсечки) начнет открываться выхлопное окно, то будем иметь механизм с отсечкой, но без расширения воздуха. Пневматические встряхивающие механизмы с отсечкой (и расширением) воздуха являются более экономичными по сравнению с механизмами без отсечки; они широко применяются.

Встряхивание с подпрессовкой. Схема механизма для уплотнения литейных форм с помощью одновременного встряхивания и прессования приведена на рис. 1.8. При включении одновременно встряхивающего и прессового цилиндров прессовый поршень поднимает стол машины. При этом выбирается расстояние между верхней кромкой формы и прессовой колодкой. Расстояние в таких механизмах делается большим (150–200 мм и более), что позволяет производить на них уплотнение чистым встряхиванием. Поэтому во время подъема стола прессовым поршнем успевает произойти некоторое количество ударов предварительного встряхивания. И лишь после того, как форма будет прижата к прессовой колодке, начинается процесс встряхивания с одновременным прессованием. Встряхивающий поршень со столом остается неподвижным. Ударный же массивный подпружиненный поршень, или амортизатор, наносит частые удары снизу по столу машины. Эти удары передаются набивке формы, образуя в ней направленные вниз инерционные силы, дополнительно к статической прессующей нагрузке. Встряхивание (т.е. удары амортизатора по столу) в таком комплексном механизме производится с большой частотой, 10–12 ударов в секунду (примерно втрое чаще, чем в обычных встряхивающих машинах). Поэтому при общей продолжительности цикла уплотнения 3–5 с число произведенных на одну форму ударов амортизатора в первые 1–2 с получается достаточно большим и действие их эффективно. Таким образом, недостатками встряхивающего способа уплотнения форм являются: значительный шум и сотрясение почвы; слабое уплотнение верхних слоев формы, поэтому требуется дополнительное уплотнение сверху. Это дополнительное уплотнение достигается: 1) подтрамбовкой, пневмотрамбовкой или вручную; 2) наложением на поверхность смеси груза (чугунной плиты) и встряхиванием вместе с ним; 3) допрессовкой после встряхивания; 4) прессованием при одновременном встряхивании.

Верхнее и нижнее прессование. При верхнем прессовании формовочная смесь из наполнительной рамки запрессовывается в опоку прессовой колодкой со стороны, противоположной модельной плите (рис. 1.9). При верхнем прессовании, кроме основного дефекта – переуплотнения смеси над моделью и недоуплотнения вокруг нее, получается большое уплотнение верхних, нерабочих частей формы и меньшее уплотнение рабочих частей формы, прилегающих непосредственно к модели. Это переуплотнение смеси над моделью может оказаться вредным, так как приводит к снижению газопроницаемости формы.

При нижнем прессовании формовочная смесь запрессовывается в опоку модельной плитой со стороны разъема литейной формы (рис. 1.10). В качестве наполнительной рамки, содержащей объем запрессовываемой в опоку смеси, здесь служит углубление в неподвижном столе машины. В углублении располагается модельная плита, укрепленная на прессовом столе, движущемся вверх при прессовании. Основной дефект прессования (переуплотнение смеси над моделью и недоуплотнение ее вокруг модели) наблюдается и при нижнем прессовании. Но здесь распределение уплотнения по высоте опоки более благоприятно: большее уплотнение получается в рабочих частях формы, около модели, а меньшее уплотнение – в нерабочей части формы. Кроме того, при нижнем прессовании создаются более благоприятные условия для уплотнения узких карманов формы – объема смеси между стенками опоки и моделью. Несмотря на некоторые отмеченные технологические преимущества нижнего прессования, на практике чаще применяют верхнее прессование литейных форм из-за большей простоты конструкции машин и более легкой переналадки технологической оснастки.

Пескометная формовка. Пескомет представляет собой метательную машину, которая бросает формовочную смесь в опоку, одновременно наполняя ее и производя уплотнение смеси. Основным рабочим органом современного центробежного пескомета является метательная головка, представляющая собой быстровращающийся ротор с одной, двумя или тремя лопатками. Эти лопатки и выбрасывают из кожуха головки порции, «пакеты» формовочной или стержневой смеси с большой скоростью вертикально вниз, в набиваемую опоку или стержневой ящик.

На рис. 1.11 показана схема метательной головки центробежного пескомета. Быстро вращающийся на горизонтальном валу ротор приводится непосредственно от электродвигателя. На роторе крепится одна (как показано на схеме) сменная лопатка. Формовочная или стержневая смесь непрерывно поступает с ленточного конвейера в кожух головки в осевом направлении через окно в задней стенке кожуха (рис. 1.12). Поток смеси отсекается быстровращающейся лопаткой, формируется под действием центробежных сил в пакет и продвигается лопаткой по окружности. При этом продвижении пакет смеси ограничивается с периферии стальной направляющей дугой. При передвижении лопаткой вдоль направляющей дуги пакет смеси под действием центробежных сил приобретает некоторое уплотнение. По прохождении направляющей дуги пакет соскальзывает с лопатки и выбрасывается в набиваемую опоку или стержневой ящик со скоростью до 60 м/c. Современные центробежные пескометы выпускают производительностью до 60 м3/ч.

Пескодувный процесс уплотнения литейных форм и стержней. Принцип пескодувного процесса уплотнения литейных форм и стержней заключается в том, что формовочная или стержневая смесь транспортируется с помощью сжатого воздуха через вдувные отверстия в технологическую емкость (полость стержневого ящика или опоку) и, заполняя ее, одновременно в ней уплотняется. Поступающий же вместе со смесью из пескодувного (пескострельного) резервуара сжатый воздух эвакуируется из технологической емкости в атмосферу через специальные очень тонкие вентиляционные отверстия, или венты. На рис. 1.13 представлена схема современного пескодувного механизма. Чтобы избежать слеживания смеси на дне резервуара, впуск воздуха в резервуар делается по его периферии. Входя с боков и снизу, струйки сжатого воздуха разрыхляют смесь, тем самым препятствуя ее зависанию и слеживанию, и способствуют более легкому ее прохождению через вдувные отверстия.

От пескодувной машины пескострельная машина отличается более быстрым впуском сжатого воздуха в резервуар. Очень быстрый, подобно выстрелу, впуск сжатого воздуха в патрон пескострельной машины (в течение около 0,05 с) обеспечивается быстрым открыванием клапана дутья. Сразу по-

сле впуска порции или заряда сжатого воздуха в пескострельный патрон клапан дутья закрывается и делает отсечку воздуха. Заряд сжатого воздуха в патроне своим давлением выталкивает порцию смеси из патрона через вдувное отверстие в технологическую емкость. Смесь устремляется в набиваемую опоку или стержневой ящик компактной массой, толкаемая сзади зарядом сжатого воздуха подобно пуле, вылетающей из пневматического ружья. Пескострельные машины в настоящее время нашли широкое промышленное применение для изготовления стержней. Их можно также использовать для изготовления литейных форм.

Поточно-литейная линия

В литейных цехах массового и крупносерийного производства процесс получения отливок, т.е. изготовления литейных форм, их сборки, заливки и выбивки, организуется по принципу непрерывного потока. Оборудование и рабочие места располагаются в последовательности операций и соединяются соответствующими транспортными средствами, передающими объекты обработки, а сами операции выполняются одновременно на всех рабочих местах. Такая система машин образует поточную линию получения отливок, или литейную формовочную линию (рис. 1.14).

Горизонтально-замкнутый литейный конвейер представляет собой ряд тележек, непрерывно движущихся по рельсам при помощи тяговой замкнутой цепи, приводимой в движение от электродвигателя через соответствующую передачу. Скорость движения формовочных конвейеров колеблется от 2 до 10 м/мин, в зависимости от загруженности и размеров опок. На рис. 1.14 конвейер показан не в виде отдельных тележек, а условно, в виде непрерывной ленты. Формовочные машины устанавливают вдоль конвейера. Формы можно собирать на самом движущемся конвейере, если скорость его невелика. Однако чаще всего сборку осуществляют на рольгангах у формовочных машин, вне конвейера, и на конвейер ставят уже собранные формы. Заливку форм обычно производят на движущихся тележках конвейера из заливочных ковшей, подвозимых по подвесному пути. Металл в заливочные ковши разливается из более крупных раздаточных ковшей, подвозимых по другому подвесному пути непосредственно от плавильной печи. Для облегчения работы заливщика заливочную площадку часто делают в виде вертикально-замкнутого пластинчатого конвейера, перемещающегося параллельно основному конвейеру с той же скоростью.

Залитые формы, обогнув закругление на конвейере, проходят через охладительный кожух и попадают на участок выбивки. Здесь формы снимаются с конвейера и выбиваются на выбивной решетке. Отработанная смесь, выбитая из опок, проваливается сквозь решетку и передается в центральное смесеприготовительное отделение, из которого после переработки раздается в бункера над формовочными машинами. Отливки транспортируют в обрубное отделение для очистки, пустые же опоки ставят на освободившиеся тележки конвейера, который доставляет их снова к формовочным машинам. Заливочное и выбивное отделения изолируют от формовочного перегородками. Пуск конвейера осуществляют нажатием пусковой кнопки обычно на участке заливки. Остановить конвейер можно с любого участка (формовки, заливки, выбивки) нажатием стоп-кнопки.

Контрольные вопросы

1. Какие методы уплотнения смеси известны?

2. Каковы преимущества и недостатки при уплотнении форм встряхиванием?

3. Каковы преимущества и недостатки при уплотнении форм прессованием?

4. Какой основной дефект форм возникает при верхнем прессовании?

5. Для каких форм и стержней целесообразно использовать пескометную формовку?

6. Каково устройство головки пескомета?

7. Какие машины используются для изготовления стержней?

8. Какие конвейеры используют для транспортировки форм на автоматических формовочных линиях?

9. Как доставляют стержни на сборочный участок автоматических формовочных линий?

10. Какое оборудование используется для выбивки форм?

Лекция 6

Литье в кокиль и литье под давлением

Общие сведения о технологических процессах получения отливок специальными способами литья. Литье в кокиль. Литье под давлением.

Общие сведения о технологических процессах получения отливок специальными способами литья

В производстве литых заготовок для деталей машин и приборов значительное место занимают так называемые специальные виды литья: литье в кокиль, литье под давлением, центробежное литье, литье в оболочковые формы, литье по выплавляемым моделям, позволяющие получать отливки повышенной точности с чистой поверхностью, минимальным припусками на обработку, высокими служебными свойствами.

Технологические процессы получения отливок специальными видами в сравнении с литьем в песчаные формы отличаются меньшими трудозатратами, меньшей материало- и энергоемкостью, дают возможность существенно улучшить условия труда и уменьшить вредное воздействие на окружающую среду.

Литье в кокиль

Кокиль – металлическая форма, которая заполняется расплавом под действием гравитационных сил. В отличие от разовой песчаной формы кокиль может быть использован многократно. Таким образом, сущность литья в кокиль состоит в применении металлических материалов для изготовления многократно используемых литейных форм.

Материал и конструкции кокилей. В зависимости от конфигурации и массы отливок в литейном производстве используют кокили различных конструкций: неразъемные (вытряхные); с вертикальной плоскостью разъема; с горизонтальной плоскостью разъема. Для отливок сложной конфигурации применяют кокили с комбинированной поверхностью разъема (рис. 1.15, рис. 1.16, рис. 1.17, рис. 1.18).

По числу одновременно отливаемых деталей кокили разделяют на одноместные и многоместные.

В зависимости от способа охлаждения различают кокили с воздушным (естественным и принудительным), жидкостным (водяным, масляным) и комбинированным охлаждением. Воздушное охлаждение используют для малонагруженных кокилей, водяное охлаждение – для высоконагруженных кокилей или для его отдельных частей.

Для изготовления кокилей широко применяют серый и высокопрочный чугуны, легированные никелем, хромом, медью, углеродистые и легированные стали. Кокили для отливки мелких деталей из алюминиевых сплавов могут изготавливаться из алюминиево-кремниевых сплавов.

Рабочая поверхность кокиля и металлических стержней покрывается специальными красками. Покраска производится с целью предохранения поверхности кокиля от воздействия жидкого металла и тем самым увеличения срока его службы, а также с целью регулирования скорости охлаждения отливки.

Перед началом литья кокиль прогревают газовыми горелками до температуры 200–250 °С. Нагрев осуществляется с целью предотвращения растрескивания рабочей поверхности формы.

Свойства отливок. В общем объеме производства отливок из цветных металлов на долю кокильного литья приходится около 40 %, что обусловлено преимуществами данного метода литья.

Кокиль – металлическая форма, обладающая по сравнению с песчаной значительно большей теплопроводность, прочностью, практически нулевыми газопроницаемость и газотворностью. Эти свойства материала кокиля обусловливают качество получаемых в нем отливок.

Повышенная скорость охлаждения способствует получению плотных отливок с мелкозернистой структурой, что повышает прочность и пластичность металла отливки. Однако в отливках из чугуна, получаемых в кокилях, вследствие особенностей кристаллизации часто образуются карбиды, ферритографитная эвтектика, отрицательно влияющие на свойства чугуна: снижается ударная вязкость, износостойкость, резко возрастает твердость в отбеленном поверхностном слое, что затрудняет обработку резанием таких отливок и приводит к необходимости подвергать их термической обработке для устранения отбела.

Кокиль практически неподатлив и более интенсивно препятствует усадке отливки, что может вызвать появление внутренних напряжений, коробление и трещины в отливке.

Размеры рабочей полости кокиля могут быть выполнены значительно точнее, чем песчаной формы. При литье в кокиль отсутствуют погрешности, вызываемые расталкиванием модели, упругими и остаточными деформациями песчаной формы, снижающими точность ее рабочей полости и, соответственно, отливки. Поэтому отливки в кокилях получаются более точными.

Физико-химическое взаимодействие металла отливки и кокиля минимально, что способствует повышению качества поверхности отливки. Отливки в кокиль не имеют пригара. Шероховатость поверхности отливок определяется составами облицовок и красок, наносимых на поверхность рабочей полости формы.

Кокиль практически газонепроницаем, но и газотворность его минимальна и определяется составами огнеупорных покрытий, наносимых на поверхность рабочей полости, поэтому газовые раковины в кокильных отливках – явление не редкое.

Механизация и автоматизация кокильного литья. В зависимости от серийности производства, массы, размеров, сложности отливок, предъявляемых к ним требований изменяется степень механизации и автоматизации процесса. Анализ основных операций литья в кокиль показывает, что этот способ – малооперационный.

При механизации процесса основными операциями являются: раскрытие и закрытие форм, установка и извлечение стержней, удаление отливок из формы, нанесение огнеупорного покрытия, охлаждение и нагрев формы, заливка металла. и средних отливок более эффективно использование автоматических литейных кокильных машин, комплексов, линий.

Основное направление развития производства кокильного литья – комплексная механизация и автоматизация производственных процессов на всех переделах, начиная с подготовки шихтовых материалов и приготовления жидкого металла, кончая обрубкой, очисткой и складированием готовых отливок, что позволит достичь необходимой эффективности производства.

Преимущества и недостатки литья. К преимуществам метода литья в кокиль можно отнести повышенную размерную точность отливок, высокую производительность процесса, многократность использования литейных форм, возможность автоматизации процесса, экономное использование производственных площадей, возможность комбинированного использования кокилей и сложных песчаных стержней, стабильность плотности и структуры отливок, высокие механические и эксплуатационные свойства.

Недостатки литья в кокиль – высокая трудоемкость изготовления и стоимость металлической формы, повышенная склонность к возникновению внутренних напряжений в отливке, вследствие затрудненной усадки.

Дефекты отливок. Общими характерными дефектами отливок при литье в кокиль являются недоливы и неслитины, усадочные дефекты, трещины, шлаковые включения и газовая пористость.

Недоливы и неслитины наблюдаются при низкой температуре расплава и кокиля перед заливкой, недостаточной скорости заливки, большой газотворности стержней и плохой вентиляции какиля;

Усадочные дефекты (раковины, утяжины, пористость) возникают из-за нарушений направленного затвердевания и недостаточного питания массивных узлов отливки, чрезмерно высокой температуры расплава и кокиля, местного перегрева кокиля, нерациональной конструкции литниковой системы.

Трещины появляются вследствие несвоевременного подрыва металлического стержня или вставки, высокой температуры заливки, нетехнологичности конструкции отливки.

Шлаковые включения образуются при использовании загрязненных шихтовых материалов, недостаточном рафинировании расплава, неправильной работе литниковой системы.

Газовая пористость образуется при нарушении технологии плавки – использовании влажной шихты, перегреве расплава, недостаточном рафинировании или раскислении сплава.

Литье под давлением

Сущность процесса литья под давлением заключается в том, что форма заполняется расплавом под давлением внешних сил, превосходящих силы гравитации, а затвердевание протекает под избыточным давлением.

Преимущества и недостатки литья. Преимуществами данного способа литья являются:

  • возможность изготовления отливок с малой толщиной стенок (менее 1 мм);
  • повышение качества отливок – отливка получается с высокой точностью размеров и чистой поверхностью, с малой шероховатостью, практически не требует обработки, имеет достаточно высокие механические свойства;
  • полное исключение трудоемких операций и хорошие предпосылки для полной автоматизации производства;
  • значительное улучшение санитарно-гигиенических условий труда из-за устранения из производства формовочных материалов, меньшее загрязнение окружающей среды.

Наряду с преимуществами литье под давлением имеет ряд недостатков:

  • ограничение габаритных размеров и массы отливок мощностью машины, усилием, развиваемым механизмом запирания пресс-формы;
  • высокую стоимость пресс-формы, сложность и трудоемкость ее изготовления;
  • низкую стойкость пресс-формы при литье тугоплавких сплавов, что ограничивает область его использования;
  • наличие в отливках газовоздушной пористости, что снижает их герметичность, затрудняет термообработку.

Основные операции. В процессе литья расплавленный металл заливается в камеру прессования специальной машины, а затем под воздействием поршня, перемещающегося в этой камере, через литниковый канал заполняет полость металлической пресс-формы, затвердевает под избыточным давлением и образует отливку. После затвердевания и охлаждения до определенной температуры из отливки сначала извлекаются стержни, а затем прессформа раскрывается, и толкатели удаляют отливку из пресс-формы.

Область использования. Заполнение пресс-формы и кристаллизация под давлением позволяют получать отливки высокого качества. Чистая поверхность и точные размеры металлической формы, высокая скорость движения расплава дают возможность резко сократить продолжительность заполнения, улучшить заполняемость и получить отливки сложной конфигурации с чистой поверхностью.

Внешнее давление на затвердевающий металл и высокие скорости его охлаждения в металлической форме способствуют измельчению структуры металла в отливке, уменьшению усадочных дефектов, повышению механических свойств.

Литьем под давлением изготавливают отливки для различных отраслей машино- и приборостроения из цинковых, алюминиевых, магниевых, медных сплавов, реже из чугуна и стали, массой от нескольких граммов до десятков килограммов, обычно тонкостенные, сложной конфигурации с развитой поверхностью.

Автоматизация литья под давлением. Размеры и масса отливок зависят от мощности машин, на которых они отливаются. Чем больше усилие запирания пресс-формы, тем большее давление и скорость перемещения развивает прессующий механизм машины, тем больших размеров отливки можно получить.

В зависимости от устройства камеры прессования различают процессы литья на машинах с холодной (рис. 1.19) и горячей камерами прессования (рис. 1.20).

В горячекамерных машинах камера прессования располагается в тигле и сообщается с ним отверстием, через которое в нее поступает расплав. При движении поршня отверстие перекрывается, и расплав поступает в полость формы. После затвердевания отливки поршень возвращается в исходное положение, и остатки расплава сливаются в камеру. После извлечения отливки пресс-форма закрывается, и цикл повторяется.

Машины с горячей камерой прессования более производительны, однако камера прессования и поршень на этих машинах работают в тяжелых условиях, быстро изнашиваются и требуют замены. Такие машины обычно используют для литья цинковых, свинцово-сурьмянистых, магниевых и других сплавов, не взаимодействующих с материалом поршня и камерой прессования.

Машины с горизонтальной холодной камерой прессования позволяют развивать значительные усилия запирания и прессования, поэтому они чаще используются для изготовления отливок из алюминиевых, медных сплавов, чугуна и стали. Однако на таких машинах труднее получить мелкие точные отливки, так как расплав быстро охлаждается и заполняемость формы ухудшается.

Машины для литья под давлением являются сложными автоматизированными агрегатами, работающими в комплексе со вспомогательным оборудованием. К вспомогательному оборудованию относятся: раздаточные печи, дозаторы жидкого металла, манипуляторы для простановки арматуры, смазывания камер прессования и пресс-формы, удаления отливки, устройства для подогрева и стабилизации температуры пресс-формы, пресс для обрезки литников и облоя.

Эффективность производства отливок под давлением зависит от того, насколько полно используются его преимущества и как учтены его недостатки.

Дефекты отливок. Причины образования дефектов при литье под давлением могут быть связаны как с качеством приготовления сплава, так и с нарушениями специфических технологических требований, присущих данному способу литья. Различают дефекты в виде несплошностей тела отливки, несоответствия геометрических размеров требованиям чертежа и дефекты поверхности отливки.

Наиболее распространенными дефектами отливок, вызванными плохим качеством сплава, являются трещины, привар, низкие механические свойства, коррозия отливок. К специфическим дефектам отливок при литье под давлением можно отнести узорчатую поверхность, следы потоков металла, привар, задиры на поверхности отливки, нечеткие контуры отливки, газовые раковины и пористость.

Литье под низким давлением. Этим способом изготовляют отливки преимущественно из алюминиевых и реже из медных сплавов.

Сущность данного способа литья состоит в вытеснении газом жидкого металла из тигля раздаточной печи в литейную форму с регулированием давления сжатого газа по заданной программе. Помимо принудительного заполнения литейной формы, позволяющего получать крупногабаритные тонкостенные детали, в этом методе литья эффективно используют питание затвердевающей отливки жидким металлом из естественной прибыли – металлопровода. При этом необходимо обеспечить затвердевание отливки сверху вниз. Регулирование динамики потока металла осуществляется давлением сжатого газа в герметичной раздаточной печи.

Воздух или инертный газ под давлением до 0,1 МПа давит на зеркало расплава. Вследствие разницы между давлением в печи и атмосферным давлением расплав по металлопроводу поступает в форму. По окончании заполнения формы и затвердевания отливки давление газа над расплавом в печи снижается до атмосферного и остаток жидкого металла из металлопровода сливается в тигель. Форма раскрывается, отливка извлекается, после чего цикл повторяется.

При литье под низким давлением отливку можно изготавливать в кокиле, песчаной или комбинированной (кокиль с песчаными или оболочковыми стержнями) форме.

Основными преимуществами процесса литья под низким давлением являются: автоматизация трудоемкой операции заливки формы; возможность регулирования скорости потока расплава в полости формы; улучшение питания отливки; повышение ее плотность, благодаря избыточному давлению на расплав; снижение расхода металла на литниковую систему, так как незатвердевший металл из металлопровода сливается в тигель, что повышает коэффициент выхода годного до 90 %.

Наряду с указанными преимуществами способ литья под низким давлением имеет ряд недостатков: невысокую стойкость металлопровода, погруженного в расплав, что затрудняет использование способа для литья из сплавов с высокой температурой плавления; сложность системы регулирования скорости потока расплава в форме, вызванную динамическими процессами, происходящими в установке при заполнении ее камеры воздухом.

Преимущества и недостатки способам определяют рациональную область его применения и перспективы развития.

Контрольные вопросы и задания

1. Какие материалы используют для изготовления кокилей?

2. С какой целью наносится краска на рабочую поверхность кокиля?

3. Назовите основные технологические операции при литье в кокиль.

4. С какой целью производится подогрев кокиля перед заливкой металла?

5. Перечислите основные преимущества процесса литья в кокиль.

6. Назовите характерные виды дефектов при литье в кокиль, причины их возникновения и меры предупреждения.

7. Опишите сущность процесса литья под давлением.

8. Какие отливки изготовляют литьем под давлением?

9. Назовите основные недостатки процесса литья под давлением.

10. В чем заключается принцип литья под низким давлением?

Лекция 7

Центробежное литье, литье в оболочковые формы

Центробежное литье. Литье в оболочковые формы.

Центробежное литье

Центробежное литье – это способ изготовления отливок, при котором заполнение формы расплавом и его затвердевание происходит в поле действия центробежных сил.

Основные операции. Форма может вращаться вокруг горизонтальной, вертикальной или наклонной осей, а также одновременно вокруг горизонтальной и вертикальной осей.

Наиболее распространен способ литья во вращающиеся металлические формы с горизонтальной осью вращения (рис. 1.21). По этому способу отливка формируется со свободной поверхностью в поле центробежных сил, а формообразующей поверхностью служит внутренняя поверхность изложницы. Расплав заливается в изложницу через заливочный желоб и растекается по внутренней поверхности формы, образуя под действием центробежных сил пустотелый цилиндр.

После полного затвердевания металла и остановки машины отливка извлекается из формы. Этот способ обладает наиболее высоким коэффициентом выхода годного (≈ 100 %).

При получении отливок со свободной поверхностью при вращении формы вокруг вертикальной оси (рис. 1.22) расплав заливают в форму, укрепленную на шпинделе, приводимом в движение электродвигателем. Расплав под действием центробежных сил отбрасывается к стенкам формы и затвердевает.

Отливки с внутренней поверхностью сложной конфигурации получают с использованием стержней в формах с вертикальной осью вращения (рис. 1.23). Расплав через заливочное отверстие и стояк попадает в центральную полость формы, выполненную стержнями. Затем через щелевые питатели под действием центробежных сил расплав попадает в полость формы.

Центробежное литье принадлежит к литейным процессам, основные операции которых выполняются с использованием машин. В зависимости от назначения машины для центробежного литья разделяют на универсальные, предназначенные для изготовления отливок общего назначения; труболитейные, предназначенные для изготовления чугунных и стальных труб, в том числе труб большого диаметра; специального назначения, используемые для изготовления однотипных отливок в массовом производстве (гильзы двигателей внутреннего сгорания, биметаллические отливки и др.).

В зависимости от расположения в пространстве оси вращения различают машины с горизонтальной, вертикальной и наклонной осью вращения. По конструктивному исполнению различают шпиндельные и роликовые машины и центробежные столы.

Основные требования, предъявляемые к машинам для центробежного литья: обеспечение вращения формы с требуемой частотой, регулирование частоты вращения в заданных условиях технологического процесса. Машина должна работать плавно, без вибраций, иметь прочные и удобные устройства для крепления и фиксации форм, устройство для подогрева и охлаждения изложниц.

Преимущества и недостатки литья. Заливка вращающейся формы и затвердевание отливки под действием центробежных сил обуславливают главные преимущества данного способа литья:

  • затвердевание металла под действием центробежных сил способствует получению плотных (без газовых, усадочных раковин и рыхлот) отливок с высокими механическими свойствами;
  • отсутствие литниковых систем и прибыльных надставок обеспечивает высокий коэффициент выхода годного;
  • при литье полых цилиндров и труб не требуется стержней для образования центрального отверстия.

Основными недостатками центробежного литья являются: неточность размеров свободных поверхностей отливок, повышенная склонность к ликвации компонентов сплава, повышенные требования к прочности литейной формы.

Область использования. Центробежным литьем получают литые заготовки, имеющие форму тел вращения: втулки, венцы червячных колес, барабаны бумагоделательных машин, трубы различного назначения, роторы электродвигателей, камеры сгорания реактивных двигателей, деталей пусковых установок. В некоторых случаях метод центробежного литья является единственно возможным.

Наибольшее применение центробежное литье находит при изготовлении втулок из медных сплавов, преимущественно оловянных бронз, и сложных фасонных отливок из титановых и других жаропрочных сплавов.

Втулки из медных сплавов получают в металлических изложницах, а отливки из титановых сплавов – в графитовых формах, изготовленных прессованием или по выплавляемым моделям. Венцы червяных колес из оловянистых бронз получают в песчаных формах, а рабочие колеса центробежных насосов – в металлических формах с песчаными стержнями.

Свойства металла, отлитого центробежным способом. Главная особенность процесса формирования отливок при центробежном литье заключается в том, что заполнение формы и затвердевание отливки происходят в поле действия центробежных сил, во много раз превосходящих силу тяжести.

При изготовлении отливок со свободной поверхностью расплав охлаждается в изложнице неравномерно по объему. Часть теплоты отводится от расплава в стенку изложницы и ее крышку, другая часть – конвекцией и излучением со стороны свободной поверхности. Воздух в полости отливки вовлекается во вращение и выходит из ее полости; на его место вдоль оси вращения поступает холодный воздух. Такая неравномерность охлаждения отливки приводит к возникновению конвекции в расплаве. Охлажденный более плотный расплав перемещается к стенкам формы, а горячий и менее плотный – к свободной поверхности расплава. Вследствие этого в расплаве возникают конвекционные потоки, циркулирующие в радиальном направлении, что способствует направленному затвердеванию в радиальном направлении и тем больше, чем больше частота вращения.

При направленном затвердевании от стенок изложницы фронт растущих в радиальном направлении кристаллов все время соприкасается с расплавом, что способствует улучшению питания отливок.

Свободная поверхность расплава затвердевает в последнюю очередь и остается геометрически правильной. Инородные 2мвключения (газы, шлак и т.д.), имеющие меньшую плотность, чем расплав, под действием силы, обусловленной разностью плотностей и гравитационным коэффициентом, интенсивно всплывают на свободную поверхность. Это приводит к необходимости назначать большие припуски на обработку свободных поверхностей отливки.

Центробежные силы способствуют направленному затвердеванию только тогда, когда выделяющиеся на свободной поверхности кристаллы твердой фазы имеют плотность большую, чем плотность остающегося расплава. Для большинства сплавов это условие соблюдается. Исключение составляют два случая: когда сплав затвердевает с увеличением объема (например, серый чугун) и когда выделяющиеся подвижные кристаллы обогащены компонентами сплава, имеющими меньшую плотность, чем остающийся расплав.

Ликвация сплавов под действием центробежных сил происходит при изготовлении отливок из сплавов, компоненты которых взаимно нерастворимы и не образуют эвтектик и химических соединений. К таким сплавам относится, например, свинцовистая бронза.

Дефекты отливок и меры по их предупреждению. В процессе производства отливок способом центробежного литья возникает ряд характерных дефектов: мелкие спаи на поверхности при низкой температуре формы и металла, горячие трещины, плены в наружных слоях втулок, сквозные раковины при литье оловянных бронз.

Надежный контроль технологических параметров литья, автоматизированная дозировка металла позволяют до минимума свести потери от брака.

Литье в оболочковые формы

Литье в оболочковые формы является одним из прогрессивных технологических процессов, позволяющих получать отливки повышенной точности.

Литье в оболочковую форму – это литье металла, осуществляемое путем его свободной заливки в оболочковую форму.

Толщины стенок оболочковых форм соизмеримы с толщинами стенок отливок либо значительно меньше их; толщины стенок оболочковых форм в десятки раз меньше толщин стенок обычных разовых форм.

Оболочковые формы изготовляют из песчано-смоляных смесей, кварцевых или цирконовых песков и искусственных термореактивных смол с добавлением увлажнителей, растворителей и катализаторов, твердеющих в оснастке.

Преимущества и недостатки. Литье в оболочковые формы по сравнению с литьем в обычные формы имеет преимущества. Высокая прочность оболочковых форм позволяет делать их тонкостенными, что существенно снижает расход смесей. Повышенная точность размеров отливки дает возможность снизить припуски на механическую обработку вдвое по сравнению с отливками, полученными в песчано-глинистые формы; сокращаются затраты на обрубно-очистные операции. Следует также отметить такие положительные качества оболочковых форм, как податливость, негигроскопичность, газопроницаемость.

Недостатками процесса являются высокая стоимость формовочных материалов, необходимость оборудования и организации эффективной вентиляции из-за высокой газотворной способности смесей.

Технология изготовления оболочковых форм и стержней. Процесс изготовления оболочек включает в себя следующие операции (рис. 1.24). Предварительно нагретую плиту с металлическими моделями покрывают смесью из песка и термореактивной синтетической смолы. Под действием тепла смола в слое смеси, прилегающем к моделям и плите, плавится, и на модельной плите образуется однородная полутвердая песчано-смоляная оболочка. После удаления избытка смеси модельную плиту с образовавшейся на ней полутвердой оболочкой дополнительно нагревают до полного ее затвердевания.

Твердую оболочку (полуформу) снимают с модельной плиты и соединяют ее с другой полуформой, проставляют стержни и скрепляют зажимами или склеивают. Оболочковые формы заливают в вертикальном или горизонтальном положении. Формы после заливки и затвердевания отливки легко разрушаются при выбивке.

При изготовлении оболочковых форм песчано-смоляную смесь можно наносить на модельную плиту различными способами: свободной засыпкой из поворотного бункера, пескодувным или пескоструйным способом.

Для предупреждения прилипания смесей к модельным плитам и облегчения съема оболочек применяют разделительные составы – смеси кремнийорганического термостойкого каучука и уайт-спирита. Разделительный состав наносят пульверизатором на рабочую поверхность модельной плиты и нагревают 1,5–2 ч при температуре 200–220 °С.

Процесс изготовления оболочковых стержней идентичен изготовлению полуформ. Оболочковые стержни изготовляют в металлических стержневых ящиках двумя способами: 1) насыпным, применяемым при ручном и механизированном изготовлении стержней; 2) пескодувным. Первый способ аналогичен тому, как изготовляют полуформы, только вместо модельной плиты на бункер устанавливается металлический стержневой ящик.

Более сложные оболочковые стержни изготавливают пескодувным способом на специальных установках.

Стержневой ящик нагревают в печи до температуры 200–250°С в течение 10–20 мин. Рабочую поверхность покрывают разделительным составом, снова прогревают 3-4 мин, засыпают песчано-смоляной смесью и выдерживают 15–20 с. Время выдержки зависит от температуры нагрева ящика и требуемой толщины оболочки. По истечению указанного времени излишек смеси высыпают из ящика. Стержни вместе с ящиком помещают в печь с температурой 300–450°С и выдерживают 30–45 с для завершения второй стадии полимеризации. После этого стержень извлекают из ящика.

Способы плакирования формовочного песка. Формовочная смесь для оболочковых форм состоит из кварцевого песка, термореактивной смолы (5–8 %) и увлажнителя (1,0–1,2 %). В качестве смол чаще применяются термореактивные смолы, в качестве увлажнителя – фурфурол, керосин, машинное масло.

Процесс обволакивания зерен песка смолой называют плакированием. Различают холодное и горячее плакирование.

В процессе холодного плакирования смолу растворяют в растворителе (технический спирт или ацетон) и смешивают с песком при 20°С в бегунах. При перемешивании зерна песка обволакиваются пленкой раствора смолы. Смесь продувают воздухом, растворитель испаряется, и смесь постепенно высыхает. Этот способ плакирования применяется редко из-за повышенной взрыво- и пожароопасности.

При горячем плакировании сухой песок предварительно нагревается до 110–130°С, а затем смешивается со смолой, которая при этом нагревается, плавится и обволакивает зерна песка. Далее в смесь вводят уротропин и другие необходимые технологические добавки. После завершения перемешивания смесь охлаждают и просеивают. Процесс горячего плакирования требует тщательного контроля температурных режимов – начальной температуры песка при вводе в смеситель и температуры смеси в момент ввода уротропина. Нарушение этих режимов приводит к получению некачественных смесей. Для горячего плакирования песка необходимо более сложное оборудование, чем для холодного плакирования.

Формовочные смеси изготовляются в шнековых, лопастных и других смесителях.

Область использования. Литьем в оболочковые формы получают сложные фасонные отливки массой до 200 кг и с максимальными размерами до 1 500 мм. Наиболее эффективно изготовление этим способом отливок массой 5–15 кг в условиях крупносерийного и массового производства.

Дефекты отливок. При литье в оболочковые формы наиболее часто возникают следующие дефекты:

  • газовые раковины (из-за повышенного содержания связующего или неравномерного его распределения в смеси, из-за применения песка, вызывающего низкую газопроницаемость оболочковых форм и стержней, из-за трещин в оболочковой форме или стержне);
  • повышенная шероховатость (из-за местных дефектов оболочковых форм или стержней);
  • спаи (из-за несоответствия конструкции отливки требованиям технологии, плохой жидкотекучести сплава, низкой температуры заливки, медленного заполнения форм);
  • трещины горячие и холодные (из-за низкой податливости оболочковых форм и стержней);
  • усадочные раковины (из-за неправильной конструкции отливки, не обеспечивающей ее достаточное питание в процессе затвердевания).

Анализ вида брака показал, что основным видом брака, возникающим при литье в оболочковые формы, являются трещины.

Надежный контроль технологических параметров литья в оболочковые формы позволяет сократить потери от брака.

Контрольные вопросы и задания

1. Назовите основные типы отливок, получаемые центробежным литьем.

2. Опишите типы литейных машин, предназначенных для получения отливок центробежным литьем.

3. Как влияют центробежные силы на структуры отливок?

4. Назовите основные требования, предъявляемые к машинам для центробежного литья.

5. Каковы главные преимущества и недостатки центробежного литья?

6. Раскройте сущность литья в оболочковые формы.

7. Назовите материалы, используемые для изготовления оболочковых форм.

8. При каких температурах происходит полимеризация отвердителя при изготовлении оболочковых стержней?

9. Как осуществляется формовка оболочек перед заливкой расплава?

10. Назовите преимущества способа литья в оболочковые формы.

Лекция 8

Литье по выплавляемым моделям

Основные операции получения отливки. Технология изготовления моделей и керамических форм. Заливка форм, обрубка и очистка отливок. Механизация и автоматизация процесса. Контроль отливок.

Основные операции получения отливки

Сущность литья по выплавляемым моделям заключается в использовании точной неразъемной разовой модели, по которой из жидких формовочных смесей изготовляется неразъемная керамическая форма. Перед заливкой расплава модель удаляется из формы выплавлением, выжиганием, растворением или испарением; для удаления остатков модели и упрочнения форма нагревается до высоких температур.

Модель или звено моделей изготовляют в разъемной пресс-форме, рабочая поверхность которой имеет конфигурацию отливки с припусками на усадку и механическую обработку.

Модель изготовляют из материалов с невысокой температурой плавления (воск, парафин, стеарин), способных растворяться (карбамид) или сгорать без образования твердых остатков (полистирол). Готовые модели или звено моделей собирают в блоки, литниковые системы которых выполняют из того же материала, что и модели. Блок моделей погружают в емкость с жидкой формовочной смесью – суспензией для оболочковых форм, состоящей из пылевидного кварца или электрокорунда и связующего. Для упрочнения этого слоя и увеличения его толщины на него наносят слой огнеупорного зернистого материала (кварцевый песок, электрокорунд, шамот). Операцию нанесения суспензии и обсыпки повторяют до получения оболочки требуемой толщины (3–10 слоев).

Каждый слой высушивают на воздухе или в парах аммиака, что зависит от связующего. После сушки оболочковой формы модель удаляют из нее выплавлением, растворением, выжиганием или испарением. Для упрочнения перед заливкой оболочковую форму помещают в контейнер и засыпают огнеупорным материалом. Для удаления остатков моделей и упрочнения связующего контейнер с оболочковой формой помещается в печь для прокалки. Прокаленную форму заливают металлом. После затвердевания и охлаждения отливки до заданной температуры форму выбивают, отливки очищают от остатков керамики и производят обрезку литников.

Последовательность операций при изготовлении оболочковых форм по выплавляемым моделям показана на рис. 1.25.

Отсутствие операции разъема формы, использование для изготовления моделей материалов, позволяющих не разбирать форму при удалении моделей, высокая огнеупорность материалов формы, нагрев ее до высоких температур перед заливкой дают возможность получать отливки сложнейшей конфигурации, максимально приближающейся к конфигурации готовой детали, поэтому литье по выплавляемым моделям относится к прогрессивным материало- и трудосберегающим технологическим процессам обработки металлов.

Технология изготовления моделей и керамических форм.

Заливка форм, обрубка и очистка отливок

Изготовление моделей. Для изготовления выплавляемых моделей используют смеси и сплавы легкоплавких материалов, чаще всего органического происхождения. В качестве исходных материалов применяют буроугольный воск, церезин, парафин, стеарин, канифоль, этилцеллюлозу и др.

Модельные составы должны обладать следующими свойствами:

  • температура плавления 60–100°С;
  • температура размягчения 35–45°С;
  • хорошая жидкотекучесть;
  • минимальная линейная и объемная усадка;
  • минимальная зольность и неприлипаемость к поверхности пресс-форм;
  • хорошая смачиваемость облицовочными составами;
  • минимальное выделение паров при нагревании и сгорании;
  • возможность многократного использования.

Технологический процесс приготовления модельного состава зависит от входящих в него компонентов. Чаще всего приготовление модельного состава и расплавление возврата производится в специальных термостатах с водяным обогревом.

Заполнение пресс-формы модельным составом осуществляется свободной заливкой расплавленной массы, запрессовкой в пастообразном состоянии, заливкой и запрессовкой под высоким давлением.

Основным способом изготовления моделей является запрессовка состава в рабочую полость пресс-формы. Это обеспечивает хорошую точность и чистоту поверхности моделей. Для выполнения этой операции применяют установки, на которых приготовление пасты из жидкого расплава и запрессовка модельной массы в пресс-формы производится автоматически.

На рис. 1.26 приведена схема запрессовки модельной массы в пресс-форму. Перед запрессовкой модельной массы стенки пресс-формы смазывают касторовым или трансформаторным маслом, смешанным с этиловым спиртом.

Готовые модели хранятся в холодной проточной воде или в термостатах.

Одновременно с изготовлением модели отливки изготавливают модели элементов литниковой системы: стояка и воронки. Затем модели собирают в блоки («елки») с помощью припайки моделей отливки к моделям литниковой системы.

Изготовление оболочки. Процесс изготовления литейной формы включает подготовку материалов, формирование огнеупорной оболочки на поверхности моделей, удаление модели из оболочки, формовку оболочки в наполнителе и прокалку формы.

Исходными материалами для изготовления оболочки являются кварцевый песок, пылевидный кварц, гидролизованный раствор этилсиликата и 15 %-й раствор едкой щелочи.

Этилсиликат – сложное химическое соединение, основой которого является эфир ортокремниевой кислоты, содержащий до 45 % окиси кремния.

Для придания этилсиликату вяжущих свойств осуществляют операцию его гидролиза в смеси воды, этилового спирта или ацетона и соляной кислоты. В результате гидролиза образуется золь кремниевой кислоты, обладающий высокими вяжущими свойствами.

 

 

 

Огнеупорную суспензию рекомендуется готовить в специальных смесителях. В бак загружается пылевидный кварц и добавляется связующее – гидролизованный раствор этилсиликата. Смесь тщательно перемешивается до полного удаления пузырьков воздуха.

Суспензию наносят на блоки моделей окунанием их в ванну с суспензией, а на крупные блоки и модели – обливанием. В зависимости от характера производства и степени механизации блок моделей погружают в ванну вручную, с помощью манипуляторов или копирующих устройств на цепных конвейерах. Блок погружают так, чтобы с поверхности моделей, особенно из глухих полостей, отверстий могли удалиться пузырьки воздуха. Вынутый из суспензии блок моделей поворачивают в различных направлениях так, чтобы суспензия равномерно распределилась по поверхности моделей, а излишки ее стекли назад в бак. После этого модельный блок сразу обсыпается песком; между нанесением суспензии и обсыпкой песком не должно проходить более 10–15 с, так как суспензия быстро сохнет и песок не соединяется с ней. Суспензию в баке непрерывно перемешивают, чтобы предотвратить оседание огнеупорного материала. Для нанесения песка на слой суспензии используют погружение модельного блока в слой «кипящего» песка.

Установки для обсыпки блока моделей в слое «кипящего» песка (рис. 1.27) состоит из емкости с песком, в ее нижней части расположена полость 2, в которую подводится сжатый воздух. Полость отделена от емкости с песком 1 сеткой, на которой уложен слой войлока. Воздух, проходя через войлок, переводит песок во взвешенное состояние, и песок обсыпает модельный блок 3.

После нанесения каждого слоя суспензии и обсыпки его высушивают в потоке воздуха или в парах аммиака. Продолжительность сушки и обсыпки каждого слоя суспензии на воздухе составляет 2–4 ч, а в парах аммиака – 50–60 мин. Сушку производят в вертикальных или горизонтальных многоярусных сушилах.

В зависимости от материала моделей используют различные способы их удаления из оболочки. Модели из выплавляемых воскообразных составов удаляют из формы погружением блока моделей в горячую воду или ванну с модельным составом. Этот способ получил наибольшее применение на производстве. Полистироловые выжигаемые модели удаляются из форм выжиганием или растворением в бензоле, ацетоне. Выжигание сопровождается выделением большого количества паров стирола, углеводородов, сажи. Во всех случаях при выжигании, растворении полистироловых моделей должна быть обеспечена хорошая приточно-вытяжная вентиляция с последующей очисткой удаляемого в атмосферу воздуха.

После удаления из блока легкоплавкого модельного состава оболочки формуют в жаропрочной опоке; засыпают наполнитель, уплотняют его, а затем форму прокаливают в газовых или электрических печах при температуре 850–900°С и выдерживают при этой температуре не менее двух часов, после чего формы поступают на участок заливки.

Изготовление отливки. Заливка форм металлом может производиться различными способами в зависимости от размера и веса отливок, состава сплава, назначения отливок. Заливка может быть:

  • свободная – металл заполняет форму под действием собственного веса;
  • на центробежных машинах – металл заполняет форму и затвердевает под действием центробежных сил.

После охлаждения форм производят выбивку отливок на специальных установках с поворотом опок на 180° для того, чтобы из опок высыпался наполнитель.

Отделение отливок от литников осуществляют следующими способами: на вибрационных установках; продавливанием стояка с отливками через обрезной штамп; отрезкой дисковыми и ленточными пилами; отрезкой газовыми горелками.

Очистка отливок от огнеупорного покрытия является очень трудоемкой операцией. На практике применяют вибрационную, пескоструйную, гидропескоструйную, химико-термическую в растворах щелочей и кислот, а также в расплавленных солях и другими способами.

Механизация и автоматизация процесса. Контроль отливок

Литье по выплавляемым моделям – процесс многооперационный.

Манипуляторные операции при изготовлении и сборке моделей, нанесение суспензии на модель и другие достаточно сложны и трудоемки, что осложняет автоматизацию процесса.

Процесс состоит из ряда длительных операций, определяющих производительность: послойное формирование и сушка слоев оболочковой формы на модели, прокаливание формы.

Качество отливок, полученных данным способом, существенно зависит от стабильности качества исходных материалов для изготовления моделей, суспензии, формы, а также от стабильности режимов технологического процесса. Это осложняет автоматизацию управления технологическим процессом.

В зависимости от характера производства (единичное, серийное, массовое), номенклатуры отливок и предъявляемых к ним требований проблема автоматизации производства решается различно.

В серийном производстве осуществляется автоматизация отдельных операций, таких, как изготовление моделей или звеньев модельных блоков, приготовление суспензии и др.

В массовом производстве отливок используют автоматизированные линии, выполняющие следующие операции: приготовление модельных составов; изготовление моделей; приготовление суспензий; изготовление оболочек; их прокаливание; заливку расплава; очистку отливок. Такие линии позволяют комплексно автоматизировать все производство.

Контрольные вопросы и задания

1. Опишите технологические операции изготовления форм при литье по выплавляемым моделям.

2. Какие материалы используют для изготовления выплавляемых моделей?

3. Для каких целей используются пресс-формы в технологическом процессе литья по выплавляемым моделям?

4. Назовите состав жидкой формовочной смеси – суспензии для формирования оболочки.

5. Опишите процесс изготовления оболочки при литье по выплавляемым моделям.

6. Какие требования предъявляются к модельным составам?

7. Назовите способы заполнения пресс-форм модельным составом.

8. Для чего производят гидролиз этилсиликата при изготовлении оболочек?

9. При каких температурах производится выплавка модельного состава и прокалка форм перед заливкой?

10. Опишите достоинства и недостатки литья по выплавляемым моделям.

Лекция 9

Получение слитков непрерывным и полунепрерывным способами

Особенности технологического процесса непрерывного и полунепрерывного литья слитков. Литейные машины и их узлы. Особенности технологии литья слитков из алюминиевых, магниевых и медных сплавов. Термообработка слитков. Дефекты слитков и меры их предупреждения.

Особенности технологического процесса непрерывного и полунепрерывного литья слитков

Слитком называют отливку определенной формы и размеров, предназначенную для дальнейшей обработки давлением, т.е. прокаткой, прессованием, штамповкой, ковкой, волочением и т.д.

В зависимости от назначения слитки могут быть плоскими (в виде плит), цилиндрическими, цилиндрическими полыми, а также могут иметь любое несложное по конфигурации сечение.

Методов литья слитков известно довольно большое количество. По основным признакам формирования их можно разделить на две группы:

1) наполнительное литье;

2) полунепрерывное и непрерывное литье слитков.

Наполнительным является такое литье, при котором форма и размер слитка определяются полостью изложницы.

Непрерывным называется литье, при котором слиток может быть получен любой требуемой длины, а литье может продолжаться сколько угодно долго. При этом кристаллизатор остается неподвижным, а слиток вытягивается с заданной скоростью.

Уровень жидкого металла в кристаллизаторе поддерживается постоянным, а отлитый слиток режется на мерные заготовки специальными устройствами, двигающимися синхронно со скоростью вытягивания слитка.

Полунепрерывное литье отличается от непрерывного тем, что оно ведется непрерывно только до получения слитка заданной длины, после чего литье прекращается, слитки извлекаются и цикл повторяется.

Процесс непрерывного литья осуществляется следующим образом (рис. 1.28). Расплав равномерно и непрерывно подается в водоохлаждаемую форму – кристаллизатор. Затвердевшая часть слитка непрерывно извлекается валками или опускается под действием собственного веса.

Особенности процесса формирования непрерывной отливки обусловлены тем, что в кристаллизаторе в разных его зонах по высоте в каждой момент одновременно происходят все последовательные стадии охлаждения и затвердевания расплава:

I – заполнение кристаллизатора расплавом;

II – отвод теплоты перегрева;

III – кристаллизация;

IV – охлаждение слитка.

Высокая интенсивность охлаждения расплава способствует его направленной кристаллизации, уменьшению ликвационной неоднородности, а непрерывная подача расплава в верхнюю часть затвердевающегося слитка – постоянному питанию фронта растущих кристаллов, устранению усадочных дефектов, рыхлот, пористости.

Как правило, заготовки, полученные способом непрерывного литья, имеют плотное, без усадочных дефектов строение, малоликвационную неоднородность и газосодержание, чистую поверхность и высокую точность размеров.

Наряду с указанными особенностями формирования отливки, способствующими повышению качества металла, процесс непрерывного литья обеспечивает ряд преимуществ над наполнительными способами получения слитков: возможность получения слитков постоянного поперечного сечения неограниченной длины, увеличение выхода годного, уменьшение расходов на изготовление изложниц, улучшение качества металла, точности размеров, улучшение поверхности слитков, автоматизация процесса создания непрерывно действующих высокопроизводительных комплексов, полное исключение трудоемких ручных операций, существенное улучшение условий труда и уменьшение вредного воздействия на окружающую среду.

Важнейшим технологическим параметром процесса непрерывного литья является интенсивность охлаждения расплава, определяющая скорость кристаллизации, качество слитка, а также производительность процесса.

Интенсивность отвода теплоты от расплава в кристаллизаторе ограничена тем, что вследствие усадки отливки между кристаллизующейся корочкой металла и стенками кристаллизатора образуется зазор, снижающий скорость охлаждения слитка. Для повышения интенсивности охлаждения слитка процесс осуществляется так, что в коротком кристаллизаторе формируется только корочка толщиной, достаточной для того, чтобы при ее выходе из кристаллизатора не образовывалось надрывов и трещин, а основное количество теплоты отводят непосредственно подачей воды на слиток через ряд отверстий в нижней кромке кристаллизатора или через щель по периметру кристаллизатора (рис. 1.29).

Литейные машины и их узлы

Современный литейный комплекс для производства слитков полунепрерывным методом включает в себя следующие агрегаты:

  • раздаточную печь (миксер) с электрическим или газовым обогревом, служащую для приготовления сплава заданного состава, поддержания заданной технологической температуры и дозирования подачи на литейную машину;
  • установку внепечного рафинирования расплава (рис. 1.30), служащую для очистки расплава от газов, металлических и неметаллических примесей;
  • установку для подачи модифицирующих добавок (рис. 1.31);
  • камеру фильтрации через пенокерамические или насыпные фильтры (рис. 1.30);
  • литейную машину вертикального или горизонтального типа для отливки плоских, цилиндрических слитков и других заготовок.

В зависимости от привода литейные машины бывают следующих типов: винтовые, цепные, тросовые и машины с гидравлическим приводом.

 

 

Литейные машины с гидравлическим приводом наиболее перспективны, так как по сравнению с другими типами машин обладают целым рядом достоинств: большой грузоподъемностью (до 120 т), позволяющей вести одновременную отливку 4–6 крупногабаритных плоских или до 140 цилиндрических слитков; широким диапазоном регулирования скорости литья и хорошей плавностью хода; возможностью полной автоматизации процесса литья под управлением оператора.

Основные узлы литейной гидравлической машины – привод, гидроцилиндр, литейный приямок (кессон), стол для монтажа литейной оснастки.

Основными элементами литейной оснастки являются:

  • кристаллизатор (формообразователь), определяющий форму, размеры и качество отливаемого слитка (рис. 1.32);
  • поддон, служащий для формирования донной части слитка и запирания кристаллизатора в момент подачи первых порций расплава (рис. 1.33);
  • коллектор-охладитель, регулирующий подачу воды для охлаждения кристаллизатора и вторичного охлаждения слитка.

Особенности технологии литья слитков из алюминиевых, магниевых и медных сплавов.

Термообработка слитков

При литье слитков из алюминиевых и магниевых сплавов высота кристаллизаторов составляет 70–140 мм. Как правило, кристаллизаторы изготовляют из алюминиевых сплавов (АМц, Д1 и Д16). Для отливки медных сплавов из-за повышенной температуры разливки материал кристаллизатора должен быть более тугоплавким – медь и медные сплавы, нередко используются графитовые кристаллизаторы. Медные и графитовые кристаллизаторы также используются при непрерывном литье слитков из стали и чугуна, при этом высота кристаллизаторов достигает 1 000 мм и более.

После отливки слитков большая часть их в зависимости от состава сплава, из которого они отлиты, проходит термическую обработку.

К термической обработке слитков относят гомогенизацию (гомогенизирующую обработку) и отжиг (гетерогенизирующую обработку).

Гомогенизацию слитков широко применяют в промышленности уже много лет. Ее проводят при температурах, приближающихся к температуре солидуса сплава, т.е. лежащих выше границы растворимости основных легирующих элементов.

Гомогенизация слитков позволяет устранить или уменьшить дендритную ликвацию, повысить способность материала к горячему и холодному деформированию; улучшить механические свойства полуфабрикатов, особенно по толщине, а также снять внутренние напряжения, возникшие в слитке при затвердевании.

Отжиг слитков проводят при температурах, достаточных для снятия внутренних напряжений. Для большинства сплавов, упрочняемых термической обработкой, этот интервал температур соответствует минимальной устойчивости твердого раствора.

Целью отжига является устранение внутренних напряжений в слитке и разупрочнение сплава, получившего полную или частичную закалку в процессе кристаллизации и последующего охлаждения.

Дефекты слитков и меры их предупреждения

При непрерывном литье слитков могут возникать дефекты на поверхности и внутри слитка. Рассмотрим наиболее характерные из них.

Наплывы (рис. 1.34) – это дефекты в виде выступов застывшего металла слитка, в том числе другого химического состава (ликвационные наплывы).

Причинами образования наплывов являются: завышенная температура литья, недостаточное охлаждение, выдавливание остаточной жидкой фазы из центра слитка на поверхность через междендритные каналы в корочке слитка.

Для снижения образования наплывов необходимо установить скорость литья в зависимости от температуры металла, подобрать режим охлаждения кристаллизатора и вторичного охлаждения, обеспечить постоянный уровень расплава в кристаллизаторе.

Неслитина – дефект, выходящий на поверхность в виде чередующихся углублений, перпендикулярных оси слитка. Неслитина представляет собой несплошность, образовавшуюся из-за неслияния потоков металла при кристаллизации.

 

 

 

Причиной образования неслитин является заниженная скорость литья и температура металла, непостоянный уровень в кристаллизаторе (рис. 1.35).

Надыры и надрывы – это дефекты поверхности, связанные с плохой полировкой и смазкой кристаллизатора, неправильной их установкой. Для предупреждения данных дефектов необходимо зачистить поверхность кристаллизатора, проверить качество смазки и равномерность ее нанесения на стенки кристаллизатора.

Кривизна слитков появляется из-за неисправностей литейной машины – это кривизна направляющих (большого люфта между рамой поддонов и направляющими), неправильная установка поддона и кристаллизаторов. Искривление слитка также может произойти из-за неравномерного охлаждения по периметру кристаллизатора.

Для предупреждения образования кривизны необходима регулярная проверка и наладка литейной машины, обеспечение равномерной подачи воды по периметру кристаллизатора и подачи металла в центр кристаллизатора.

Трещина – это разрыв металла на поверхности или внутри слитка. Трещины в слитках возникают как в процессе кристаллизации (кристаллизационные или горячие трещины), так и после полного затвердевания слитка (холодные трещины).

Как правило, трещины образуются вследствие нарушения установленных параметров литья; завышенной температуры и скорости литья, неравномерного охлаждения по периметру слитка, из-за неравномерного распределения горячего металла в кристаллизаторе. Трещины могут располагаться по широким граням плоского слитка, в донной части слитка, по углам, а также в центре цилиндрического слитка.


29.05.2015; 16:58
хиты: 142
рейтинг:0
Гуманитарные науки
религиоведение
буддизм
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь