пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

39.Принцип работы холодильной машины.

Наиболее обширным класс холодильных машин базируется на компрессионном цикле охлаждения, основными конструктивными элементами которого являются – компрессор, испаритель, конденсатор и регулятор потока (капиллярная трубка), соединенные трубопроводами и представляющие собой замкнутую систему, в которой циркуляцию хладагента осуществляет компрессор. Кроме обеспечения циркуляции, компрессор поддерживает в конденсаторе (на линии нагревания) высокое давление.

Следует отметить, что кондиционер - это та же холодильная машина, но предназначенная для тепловлажностной обработки воздушного потока. Кроме того, кондиционер обладает существенно большими возможностями, более сложной конструкцией, многочисленными дополнительными опциями и т.п.

Охлаждение в кондиционере или холодильной машине обеспечивается непрерывной циркуляцией, кипением и конденсацией хладагента в замкнутой системе. Кипение хладагента происходит при низком давлении и низкой температуре, а конденсация – при высоком давлении и температуре.

участок 1-1. Здесь хладагент находится в парообразном состоянии, с низким давлением и температурой.

Парообразный хладагент всасывается компрессором, который повышает его давление до 15-25 атм и температуру до 70-90 °С (участок 2-2).

Далее в конденсаторе горячий парообразный хладагент охлаждается и конденсируется, т.е. переходит в жидкую фазу.

На выходе из конденсатора (точка 3) хладагент находится в жидком состоянии при высоком давлении.

Затем хладагент в жидкой фазе при высокой температуре и давлении поступает в регулятор потока, где давление смеси резко уменьшается, часть жидкости при этом может испариться, переходя в парообразную фазу. Таким образом, в испаритель попадает смесь пара и жидкости (точка 4).

Жидкость кипит в испарителе, отбирая тепло от окружающего воздуха, и вновь переходит в парообразное состояние.

Для конденсаторов с воздушным охлаждением величина перегрева составляет 5-8 °С. Перегретый пар выходит из испарителя (точка 1), и цикл возобновляется. Таким образом, хладагент постоянно циркулирует по замкнутому контуру, меняя свое агрегатное состояние с жидкого на парообразное и наоборот.

схема теоретического (идеального) цикла охлаждения.

Сжатие пара в компрессоре. Холодный парообразный насыщенный хладагент поступает в компрессор (точка C). В процессе сжатия повышаются его давление и температура (точка D). Теплосодержание (энтальпия) также повышается на величину, определяемую отрезком HC’-HD, то есть проекцией линии C’-D на горизонтальную ось.

Конденсация. В конце цикла сжатия (точка D) горячий пар поступает в конденсатор, где начинается его конденсация и переход из состояния горячего пара в состояние горячей жидкости.

Процесс в конденсаторе происходит в три стадии: снятие перегрева (D-E), собственно конденсация (E-A) и переохлаждение жидкости (A-A’).

Рассмотрим кратко каждый этап.

Снятие перегрева [D-E] Это первая фаза, происходящая в конденсаторе, в течение которой температура охлаждаемого пара снижается до температуры насыщения или конденсации. На этом этапе происходит лишь отъем излишнего тепла и не происходит изменения агрегатного состояния хладагента. На этом участке снимается примерно 10-20% общего тепла в конденсаторе.

Конденсация [E-A] Температура конденсации охлаждаемого пара и образующейся жидкости сохраняется постоянной на всем протяжении всей этой фазы. Происходит изменение агрегатного состояния хладагента с переходом насыщенного пара в состояние насыщенной жидкости. На этом участке снимается 60-80% тепла.

Переохлаждение жидкости [A-A’] На этой фазе хладагент, находящийся в жидком состоянии, подвергается дальнейшему охлаждению, в результате чего его температура понижается. Получается переохлажденная жидкость (по отношению к состоянию насыщенной жидкости) без изменения агрегатного состояния.

Переохлаждение хладагента дает значительные энергетические преимущества: при нормальном функционировании понижение температуры хладагента на один градус соответствует повышению мощности холодильной машины примерно на 1% при том же уровне энергопотребления.

Количество тепла, выделяемого в конденсаторе. Участок D-A’ соответствует изменению теплосодержания хладагента в конденсаторе и характеризует количество тепла, выделяемого в конденсаторе.

Регулятор потока [A’-B] Переохлажденная жидкость с параметрами в точке A’ поступает на регулятор потока (капиллярную трубку или терморегулирующий расширительный клапан), где происходит резкое снижение давления. Если давление за регулятором потока становится достаточно низким, то кипение хладагента может происходить непосредственно за регулятором, достигая параметров точки B.

Испарение жидкости в испарителе [B-C’] Смесь жидкости и пара (точка B) поступает в испаритель, где она поглощает тепло от окружающей среды (потока воздуха) и переходит полностью в парообразное состояние (точка C).

Процесс идет при постоянной температуре, но с увеличением теплосодержания.

Как уже говорилось выше, парообразный хладагент несколько перегревается на выходе испарителя. Главная задача фазы перегрева (C-C’) - обеспечение полного испарения остающихся капель жидкости, чтобы в компрессор поступал только парообразный хладагент. Это требует повышения площади теплообменной поверхности испарителя на 2-3% на каждые 0,5. °С перегрева. Поскольку обычно перегрев соответствуют 5-8.°С, то увеличение площади поверхности испарителя может составлять около 20%, что, безусловно оправдано, т.к. увеличивает эффективность охлаждения.

Количество тепла, поглощаемого испарителем. Участок HB-HC’ соответствует изменению теплосодержания хладагента в испарителе и характеризует количество тепла, поглощаемого испарителем.


26.01.2015; 21:56
хиты: 91
рейтинг:0
Точные науки
науки о системах
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь