пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

I семестр:
» Информатика

Классификация и развитие вычислительной техники.


ЭВМ - это электронное устройство, способное автоматически принимать перерабатывать, хранить, накапливать, обновлять и выдавать информацию.
Первой электронной вычислительной машиной принято считать машину ENIAC (США, 1946 г.) Первой вычислительной машиной в СССР была МЭСМ, построенная под руководством академика Лебедева в 1951 г.
Первой серийно выпускавшейся ЭВМ в США стала IBM – 701(1951 г.), в СССР ЭВМ БЭСМ – 1 (1952 г.)
Развитие вычислительной техники обычно принято привязывать к изменению элементной базы, на которой она строится, в связи с этим можно выделить несколько поколений ЭВМ:
1. Поколение начало 50-х годов. Элементная база – электронные лампы. Техника этого поколения характеризовалась низкой надежностью, большими габаритами, высоким энергопотреблением, программированием в кодах. (Для ввода-вывода данных использовались перфоленты и перфокарты, магнитные ленты и печатающие устройства. Оперативные запоминающие устройства были реализованы на основе ртутных линий задержки электроннолучевых трубок.Компьютеры данного поколения сумели зарекомендовать себя в прогнозировании погоды, энергетических задач, задач военного характера и других сложнейших операциях, но они были огромными, неудобными и слишком дорогими машинами. Притом для каждой машины использовался свой язык программирования. Показатели объема оперативной памяти и быстродействия были низкими).
2. Поколение конец 50-х начало 60-х. Элементная база – полупроводники. Повысилась надежность работы, уменьшилось энергопотребление были разработаны первые алгоритмические языки. (В 1958 г. в ЭВМ были применены полупроводниковые транзисторы, изобретённые в 1948 г. Уильямом Шокли, они были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить ~ 40 электронных ламп и работает с большей скоростью.Эти дискретные транзисторные логические элементы со временем вытеснили электронные лампы. В качестве носителей информации использовались магнитные ленты ("БЭСМ-6", "Минск-2","Урал-14") и магнитные сердечники, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски).
3. Поколение 60-е первая половина 70-х годов. Элементная база первые интегральные микросхемы, многослойный печатный монтаж. Резкое уменьшение габаритов вычислительной техники, дальнейшее повышение надежности, быстродействия. ЭВМ применяются в промышленных масштабах, организован доступ с удаленных терминалов. (Машины третьего поколения - это семейства машин с единой архитектурой, т.е. программно совместимых, основанных на интегральных схемах.В 1960 г. появились первые интегральные схемы (микросхемы), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями. Интегральная схема - это кремниевый кристалл, площадь которого примерно 10 мм2. Одна такая схема способна заменить десятки тысяч транзисторов, один кристалл выполняет такую же работу, как и 30-ти тонный "Эниак". А компьютер с использованием интегральных схем достигает производительности в 10 млн. операций в секунду. Машины третьего поколения имеют развитые операционные системы, обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.)

4. Поколение конец 70-х начало 80-х годов. Элементная база – микропроцессоры, большие и сверх большие интегральные микросхемы. Дальнейшее уменьшение размеров, повышение быстродействия ЭВМ их надежности. Начало выпуска персональных компьютеров. (Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см2.). БИСы применялись уже в таких компьютерах, как "Иллиак", "Эльбрус", "Макинтош". Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.C точки зрения структуры машины этого поколения представляют собой многопроцессорные и многомашинные комплексы, работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 - 64 Мбайт.).

5. Поколение наши дни. Ведутся исследования в области оптоэлектроники и построению на ее базе ЭВМ, разрабатываются новые поколения интеллектуальных систем, развивается концепция сетевых вычислений

По своим параметрам вычислительную технику принято разделять на: СуперЭВМ(производительность-1000-100000 MIPS, оперативная память – 2000-10000 Мб, разрядность 128 бит).

БольшиеЭВМ(производительность – 2000-10000 MIPS, оперативная память – 256-10000 Мб, разрядность 32-64 бит).

МиниЭВМ (производительность – 1-100 MIPS, оперативная память – 16-512 Мб, разрядность 16-64 бит).

МикроЭВМ производительность – 1-100 MIPS, оперативная память – 4-256 Мб, разрядность 16-64 бит. MIPS – миллион операций в секунду над числами с фиксированной запятой.

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.


17.01.2015; 20:57
хиты: 0
рейтинг:0
Точные науки
информатика
Информационные науки
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь