пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Квантовая теория атома Бора

В 1913 году датский физик Нильс Бор  ввёл идеи квантовой теории в ядерную модель атома Резерфорда и разработал теорию атома водорода, которая подтвердилась всеми известными тогда опытами. Бор сформулировал в виде постулатов основные положения новой теории,  в основе которой лежат три постулата.

Свои постулаты Н.Бор применил для построения теории простейшей атомной системы – атома водорода, состоящего из ядра – протона, и одного электрона. Эта теория также применима для водородоподобных ионов, то есть атомов с зарядом ядра Ze и потерявших все электроны, кроме одного (например, Li2+, Be3+ и т.п.). 

 I – й постулат – постулат стационарных состояний:

Атомная система может находиться только в особых стационарных, или квантовых, состояниях, каждому из которых соответствует определённая энергия  En. В стационарном состоянии атом не излучает.

II –й постулат – правило частот:

Излучение испускается или поглощается в виде светового кванта энергии при переходе электрона из одного стационарного состояния в другое.

Величина светового кванта равна разности энергий стационарных состояний, между которыми совершается переход электрона

III –й постулат – правило квантования орбит:

В стационарном состоянии атома электрон, двигаясь по круговой орбите с ускорением, не излучает света, должен иметь дискретные (квантованные) значения момента импульса.  Причём, стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка

 n =1, 2, 3…..

Число n – положительное число, которое называется главное квантовое число.

Главное квантовое число указывает номер орбиты, по которой может обращаться электрон.

Для получения энергетических уровней в атоме водорода в рамках модели Бора записывается второй закон Ньютона для движения электрона по круговой орбите в поле кулоновской силы от притяжения

называется постоянной Ридберга. Она равна энергии связи электрона в атоме водорода в основном состоянии, т.е. минимальной энергии, необходимой для ионизации атома водорода в низшем (стабильном) энергетическом состоянии.

Радиус стационарной орбиты  Rn    и энергия  En находящегося на этой орбите электрона

Достоинства теории Бора

Объяснила дискретность энергетических состояний водородоподобных атомов.

Теория Бора подошла к объяснению внутриатомных процессов с принципиально новых позиций, стала первой полуквантовой теорией атома.

Бор смело предположил о существовании стационарных состояний и скачкообразных переходов между ними. Эти положения позднее были распространены и на другие микросистемы.

Недостатки теории Бора

Не смогла объяснить интенсивность спектральных линий.

Справедлива только для водородоподобных атомов и не работает для атомов, следующих за ним в таблице Менделеева без экспериментальных данных (энергии ионизации или других).

Теория Бора логически противоречива: не является ни классической, ни квантовой. В системе двух уравнений, лежащих в её основе, одно — уравнение движения электрона — классическое, другое — уравнение квантования орбит — квантовое.

Спектр атома водорода по Бору

При движении электрона по орбите сила Кулона является центростремительной. Тогда

Радиус первой орбиты в атоме водорода R0=5,29·10−11 м, ныне называется боровским радиусом,

 r ~ n2.

 

Внутренняя энергия атома равна сумме кинетической и потенциальной энергии

где  знак минус означает, что электрон находится в связанном состоянии. Из формулы (1) следует, что энергетические состояния атома образуют последовательность энергетических уровней, изменяющихся в зависимости от значения n. Целое число n в (1), определяющее энергетические уровни атома, называется главным квантовым числом. Энергетическое состояние с n =1 является основным состоянием. Состояние с n > 1 называется возбужденным. Энергетический уровень, соответствующий основному состоянию, называется основным, все остальные – возбужденными.

Теория Бора внутренне противоречива: применяет законы классической физики, а основывается на квантовых постулатах. Теория Бора не может объяснить спектр атома гелия.

Спектральные серии водорода — набор спектральных серий, составляющих спектр атома водорода. Поскольку водород — наиболее простой атом, его спектральные серии наиболее хорошо изучены

Первым был изучен спектр самого простого элемента – атома водорода. Бальмер в 1885 г. установил, что длины волн известных в то время девяти линий спектра водорода могут быть вычислены по формуле

Формула Бальмера – Ридберга впервые указала на особую роль целых чисел в спектральных закономерностях.

В настоящее время известно большое число спектральных линий водорода, длины волн которых с большой степенью точности удовлетворяют формуле Бальмера – Ридберга. Из формулы Бальмера – Ридберга видно, что спектральные линии, отличающиеся различными значениями n, образуют группу или серию линий, называемую серией Бальмера. С ростом n спектральные линии серии сближаются друг с другом.

Серия Бальмера расположена в видимой части спектра, поэтому была обнаружена первой.

В начале XX века в спектре атома водорода было обнаружено ещё несколько серий в невидимых частях спектра.

Таким образом, известны следующие серии спектра атома водорода

Все приведенные выше серии могут быть описаны одной формулой, называемой обобщенной формулой Бальмера

 


17.01.2017; 19:49
хиты: 230
рейтинг:0
Естественные науки
физика
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь