пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Билет 7

Вопрос 1 Углеводы. Физиологически важные углеводы и их биомедицинское значение. Общие сведения о структуре и изомерии углеводов. Классификация углеводов. Производные моносахаридов. Дисахариды. Полисахариды.

 

Виды углеводов

Различают две основные группы углеводов: простые и сложные. К простым углеводам относятся глюкоза, фруктоза, галактоза, сахароза, лактоза и мальтоза. К сложным - крахмал, гликоген, клетчатка и пектиновые вещества.

Углеводы подразделяются на моносахариды (простые), олигосахариды и полисахариды (сложные).

1. Моносахариды

· глюкоза

· фруктоза

· галактоза

· манноза

2. Олигосахариды

· Дисахариды

· сахароза (обычный сахар, тростниковый или свекловичный)

· мальтоза

· изомальтоза

· лактоза

· лактулоза

3.Полисахариды

· декстран

· гликоген

· крахмал

· целлюлоза

· галактоманнаны

Моносахариды (простые углеводы) являются наиболее простыми представителями углеводов и при гидролизе не расщепляются до более простых соединений. Простые углеводы легко растворяются в воде и быстро усваиваются. Они обладают выраженным сладким вкусом и относятся к сахарам.

В зависимости от числа углеродных атомов в молекулах моносахариды делятся на триозы, тетрозы, пентозы и гексозы. Для человека наиболее важны гексозы (глюкоза, фруктоза, галактоза и др.) и пентозы (рибоза, дезоксирибоза и др.).

При соединении двух молекул моносахаридов образуются дисахариды.

Наиболее важной из всех моносахаридов является глюкоза, так как она является структурной единицей (кирпичиком) для построения большинства пищевых ди - и полисахаридов. Транспорт глюкозы в клетки регулируется во многих тканях гормоном поджелудочной железы - инсулином.

У человека излишки глюкозы в первую очередь превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г - это суточный запас углеводов, используемый при их глубоком дефиците в питании. Длительный дефицит гликогена в печени ведет к дисфункции гепатоцитов и ее жировой инфильтрации.

Олигосахариды - более сложные соединения, построенные из нескольких (от 2 до 10) остатков моносахаридов. Они делятся на дисахариды, трисахариды и т.д. Наиболее важны для человека дисахариды - сахароза, мальтоза и лактоза. Олигосахариды, к которым относятся рафиноза, стахиоза, вербаскоза, в основном содержатся в бобовых и продуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде.

К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышленно производимых из полисахаридного сырья сиропов, паток. Одним из представителей олигосахаридов является лактулоза, образующаяся из лактозы в процессе тепловой обработки молока, например при выработке топленого и стерилизованного молока.

Олигосахариды практически не расщепляются в тонком кишечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые олигосахариды играют существенную роль в жизнедеятельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично ферментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза кишечника.

Полисахариды - высокомолекулярные соединения-полимеры, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на перевариваемые и неперевариваемые в желудочно-кишечном тракте человека. В первую подгруппу входят крахмал и гликоген, во вторую - разнообразные соединения, из которых наиболее важны для человека целлюлоза (клетчатка), гемицсллюлоза и пектиновые вещества.

Олиго - и полисахариды объединяют термином "сложные углеводы". Моно - и дисахариды обладают сладким вкусом, в связи с чем их называют также "сахарами". Полисахариды сладким вкусом не обладают. Сладость сахароз различна. Если сладость раствора сахарозы принять за 100 %, то сладость эквимолярных растворов других Сахаров составит: фруктозы - 173 %, глюкозы - 81 %, мальтозы и галактозы - 32 % и лактозы - 16 %.

Основным усваиваемым полисахаридом является крахмал - пищевая основа зерновых, бобовых и картофеля. На его долю приходится до 80% потребляемых с пищей углеводов. Он представляет из себя сложный полимер, состоящий из двух фракций: амилозы - линейного полимера и амило-пектина - разветвленного полимера. Именно соотношение этих двух фракций в различных сырьевых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности растворимость в воде при разной температуре. Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель.

Для облегчения усвоения крахмала организмом продукт, содержащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последовательной, начиная с ротовой полости, ферментации до мальтодекстринов, мальтозы и глюкозы с последующим практически полным усвоением.

Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико - с рационом поступает не более 10-15 г гликогена в составе печени, мяса и рыбы. При созревании мяса гликоген превращается в молочную кислоту.

Некоторые сложные углеводы (клетчатка, целлюлоза и др.) в организме человека не перевариваются вовсе. Тем не менее, это необходимый компонент питания: они стимулируют перистальтику кишечника, формируют каловые массы, способствуя тем самым выведению шлаков и очистке организма. Кроме того, клетчатка хоть и не переваривается человеком, но служит источником питания для полезной кишечной микрофлоры.

Заключение

Значение углеводов в питании человека весьма велико. Они служат важнейшим источником энергии, обеспечивая до 50-70 % общей калорийности рациона.

Способность углеводов быть высокоэффективным источником энергии лежит в основе их "сберегающего белок" действия. Хотя углеводы не принадлежат к числу незаменимых факторов питания и могут образовываться в организме из аминокислот и глицерина, минимальное количество углеводов суточного рациона не должно быть ниже 50-60 г.

С нарушением обмена углеводов тесно связан ряд заболеваний: сахарный диабет, галактоземия, нарушение в системе депо гликогена, нетолерантность к молоку и т.д. Следует отметить, что в организме человека и животного углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды; в растительных организмах за счет целлюлозы на долю углеводов приходится до 80% от сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений вместе взятых.

 

 

 

Углево́ды (сахара́, сахариды) — органические вещества, содержащие карбонильную группу и несколькогидроксильных групп[1]. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) основную часть органического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями.

Углеводы — весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2—3 % массы животных[1].

Простые и сложные[править | править вики-текст]

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц — олигосахариды, а более десяти — полисахариды. Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

 
Распространённый в природе моносахарид — бета-D-глюкоза.

Моносахари́ды (от греческого monos — единственный, sacchar — сахар) — простейшие углеводы, не гидролизующиеся с образованием более простых углеводов — обычно представляют собой бесцветные, легко растворимые в воде, плохо — в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения[2], одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладаютсладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозытетрозыпентозы,гексозыгептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы[2]. Моносахариды — стандартные блоки, из которых синтезируются дисахаридыолигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) — структурная единица многих дисахаридов (мальтозысахарозы и лактозы) и полисахаридов (целлюлозакрахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов[2].

Дисахариды[править | править вики-текст]

 
Мальтоза (солодовый сахар) — природныйдисахарид, состоящий из двух остатковглюкозы

Дисахари́ды (от di — два, sacchar — сахар) — сложные органические соединения, одна из основных групп углеводов, пригидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным случаем олигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединены друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных[3].

Олигосахариды[править | править вики-текст]

 
Рафиноза — природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы.

О́лигосахари́ды (от греч. ὀλίγος — немногий) — углеводы, молекулы которых синтезированы из 2 — 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее[3]. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных — гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.

Среди природных трисахаридов наиболее распространена рафиноза — невосстанавливающий олигосахарид, содержащий остатки фруктозыглюкозы и галактозы — в больших количествах содержится в сахарной свёкле и во многих других растениях[3].

Полисахариды[править | править вики-текст]

 
Слева — крахмал, справа — гликоген.

Полисахари́ды — общее название класса сложных высокомолекулярных углеводовмолекулы которых состоят из десятков, сотен или тысяч мономеров — моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков[4].

Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами илипентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмалцеллюлозапектиновые вещества), животного (гликогенхитин) и бактериального (декстраны) происхождения[2].

Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Крахма́л (C6H10O5)n — смесь двух гомополисахаридов: линейного — амилозы и разветвлённого — амилопектинамономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде[2]. Молекулярная масса 105—107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10—30 %, амилопектина — 70—90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20—30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации — декстрины (C6H10O5)p, а при полном гидролизе —глюкоза[4].

Гликоге́н (C6H10O5)n — полисахарид, построенный из остатков альфа-D-глюкозы — главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105—108Дальтон и выше[4]. В организмах животных является структурным и функциональным аналогом полисахарида растений — крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован — сильное разветвление его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы[2]. В отличие от запасатриглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100—120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюло́за (клетча́тка) — наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном — D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс[4]. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу[2].

Хити́н — структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих — насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозидными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой[2].

Пекти́новые вещества́ — полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот способны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производноеподорожника «плантаглюцид»[2].

Мурами́н (лат. múrus — стенка) — полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе[2].

Декстра́ны — полисахариды бактериального происхождения — синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»:Полиглюкин и другие)[2].

Пространственная изомерия[править | править вики-текст]

 
Слева D-глицеральдегид, справа L-глицеральдегид.

Изомерия (от др.-греч. ἴσος — равный, и μέρος — доля, часть) — существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение — L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы — глюкозафруктоза,манноза и галактоза — по стереохимической конфигурациям относят к соединениям D-ряда[5].

Биологическая роль[править | править вики-текст]

В живых организмах углеводы выполняют следующие функции:

  1. Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентомклеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих[1].
  2. Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
  3. Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФДНК и РНК)[6].
  4. Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды[6].
  5. Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин — у растений[1].
  6. Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100—110 мг/% глюкозы, от концентрацииглюкозы зависит осмотическое давление крови.
  7. Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандов.

Биосинтез[править | править вики-текст]

В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмалклетчаткусахарозуХищники получают гликоген с мясом.

Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления:

\mathsf{C_x(H_2O)_y + xO_2 \rightarrow xCO_2 + yH_2O, \ \Delta H<0}

В зеленых листьях растений углеводы образуются в процессе фотосинтеза — уникального биологического процесса превращения в сахара неорганических веществ —оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии:

\mathsf{xCO_2 + yH_2O \rightarrow C_x(H_2O)_y + xO_2}

Обмен[править | править вики-текст]

Обмен углеводов в организме человека и высших животных складывается из нескольких процессов[4]:

  1. Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
  2. Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
  3. Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислородагликолиз — пути расщепления глюкозы в организме.
  4. Взаимопревращение гексоз.
  5. Аэробное окисление продукта гликолиза — пирувата (завершающая стадия углеводного обмена).
  6. Глюконеогенез — синтез углеводов из неуглеводистого сырья (пировинограднаямолочная кислотаглицеринаминокислоты и другие органические соединения).

Важнейшие источники[править | править вики-текст]

Главными источниками углеводов из пищи являются: хлебкартофельмакароныкрупы, сладости. Чистым углеводом является сахарМёд, в зависимости от своего происхождения, содержит 70—80 % глюкозы и фруктозы.

Для обозначения количества углеводов в пище используется специальная хлебная единица.

К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов[править | править вики-текст]

136.gif

Вопрос 2 Биосинтез белка.

Пластический обмен (ассимиляция или анаболизм) – совокупность реакций биологического синтеза. Название этого вида обмена отражает его сущность: из веществ, поступающих в клетку из вне, образуются вещества, подобные веществам клетки.

Рассмотрим одну из важнейших форм пластического обмена – биосинтез белков. Биосинтез белков осуществляется во всех клетках про -и эукариот. Информация о первичной структуре (порядке аминокислот) белковой молекулы закодирована последовательностью нуклеотидов в соответствующем участке молекулы ДНК — гене.

Ген— это участок молекулы ДНК, определяющий порядок аминокислот в молекуле белка. Следовательно, от порядка нуклеотидов в гене зависит порядок аминокислот в полипептиде, т.е. его первичная структура, от которой в свою очередь зависят все другие структуры, свойства и функции белковой молекулы.

Система записи генетической информации в ДНК (и - РНК) в виде определенной последовательности нуклеотидов называется генетическим кодом. Т.е. единица генетического кода (кодон) — это триплет нуклеотидов в ДНК или РНК, кодирующий одну аминокислоту.

Всего генетический код включает 64 кодона, из них 61 кодирующий и 3 некодирующих (кодоны-терминаторы, свидетельствующие об окончании процесса трансляции).

Кодоны-терминаторы в и - РНК: УАА, УАГ, УГА, в ДНК: АТТ, АТЦ, АЦТ.

Начало процесса трансляции определяет кодон-инициатор (АУГ, в ДНК — ТАЦ), кодирующий аминокислоту метионин. Этот кодон первым входит в рибосому. Впоследствии метионин, если он не предусмотрен в качестве первой аминокислоты данного белка, отщепляется.

Генетический код обладает характерными свойствами.

1.      Универсальность — код одинаков для всех организмов. Один и тот же триплет (кодон) в любом организме кодирует одну и ту же аминокислоту.

2.      Специфичность — каждый кодон шифрует только одну аминокислоту.

3.      Вырожденность — большинство аминокислот могут кодироваться несколькими кодонами. Исключение составляют 2 аминокислоты — метионин и триптофан, имеющие лишь по одному варианту кодона.

4.      Между генами имеются «знаки препинания» — три специальных триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза полипептидной цепи.

5.      Внутри гена «знаков препинания» нет.

Для того, чтобы синтезировался белок, информация о последовательности нуклеотидов в его первичной структуре должна быть доставлена к рибосомам. Этот процесс включает два этапа – транскрипцию и трансляцию.

Транскрипция (переписывание) информации происходит путем синтеза на одной из цепей молекулы ДНК одноцепочной молекулы РНК, последовательность нуклеотидов которой точно соответствует последовательности нуклеотидов матрицы – полинуклеотидной цепи ДНК.

Она (и - РНК) является посредником, передающим информацию от ДНК к месту сборки молекул белка в рибосоме. Синтез и - РНК (транскрипция) происходит следующим образом. Фермент (РНК - полимераза) расщепляет двойную цепочку ДНК, и на одной из ее цепей (кодирующей) по принципу комплементарности выстраиваются нуклеотиды РНК. Синтезированная таким образом (матричный синтез) молекула и - РНК выходит в цитоплазму, и на один ее конец нанизываются малые субъединицы рибосом.

Второй этап в биосинтезе белка — трансляция — это перевод последовательности нуклеотидов в молекуле и - РНК в последовательность аминокислот в полипептиде. У прокариот, не имеющих оформленного ядра, рибосомы могут связываться с вновь синтезированной молекулой и - РНК сразу же после ее отделения от ДНК или даже до полного завершения ее синтеза. У эукариот и - РНК сначала должна быть доставлена через ядерную оболочку в цитоплазму. Перенос осуществляется специальными белками, которые образуют комплекс с молекулой и - РНК. Кроме функций переноса эти белки защищают и - РНК от повреждающего действия цитоплазматических ферментов.

В цитоплазме на один из концов и - РНК (а именно на тот, с которого начинается синтез молекулы в ядре) вступает рибосома и начинается синтез полипептида. По мере продвижения по молекуле РНК рибосома транслирует триплет за триплетом, последовательно присоединяя аминокислоты к растущему концу полипептидной цепи. Точное соответствие аминокислоты коду триплета и - РНК обеспечивается т - РНК.

Транспортные РНК (т - РНК) «приносят» аминокислоты в большую субъединицу рибосомы. Молекула т - РНК имеет сложную конфигурацию. На некоторых участках ее между комплементарными нуклеотидами образуются водородные связи, и молекула по форме напоминает лист клевера. На ее верхушке расположен триплет свободных нуклеотидов (антикодон), который соответствует определенной аминокислоте, а основание служит местом прикрепления этой аминокислоты (рис. 1).

biosintez

Рис. 1. Схема строения транспортной РНК: 1 — водородные связи; 2 — антикодон; 3 —место прикрепления аминокислоты.

Каждая т - РНК может переносить только свою аминокислоту. Т-РНК активируется специальными ферментами, присоединяет свою аминокислоту и транспортирует ее в рибосому. Внутри рибосомы в каждый данный момент находится всего два кодона и-РНК. Если антикодон т-РНК является комплементарным кодону и-РНК, то происходит временное присоединение т-РНК с аминокислотой к и-РНК. Ко второму кодону присоединяется вторая т-РНК, несущая свою аминокислоту. Аминокислоты располагаются рядом в большой субъединице рибосомы, и с помощью ферментов между ними устанавливается пептидная связь. Одновременно разрушается связь между первой аминокислотой и ее т-РНК, и т-РНК уходит из рибосомы за следующей аминокислотой. Рибосома перемещается на один триплет, и процесс повторяется. Так постепенно наращивается молекула полипептида, в которой аминокислоты располагаются в строгом соответствии с порядком кодирующих их триплетов (матричный синтез) (рис. 2).

sintez_belka2

Рис. 2. Схема бисинтеза белка: 1 — и-РНК; 2 - субъединицы рибосомы; 3 — т-РНК с аминокислотами; 4 — т-РНК без аминокислот; 5 — полипептид; 6 — кодон и-РНК; 7- антикодон т-РНК.

Одна рибосома способна синтезировать полную полипептидную цепь. Однако, нередко по одной молекуле и-РНК движется несколько рибосом. Такие комплексы называются полирибосомами. После завершения синтеза полипептидная цепочка отделяется от матрицы – молекулы и-РНК, сворачивается в спираль и приобретает свойственную ей (вторичную, третичную или четвертичную) структуру. Рибосомы работают очень эффективно: в течение 1с бактериальная рибосома образует полипептидную цепь из 20 аминокислот.

 

 

 

  В обмене веществ организма ведущая роль принадлежит белкам и нуклеиновым кислотам. Белковыевещества составляют основу всех жизненно важных структур клетки, они входят в состав цитоплазмы. Белкиобладают необычайно высокой реакционной способностью. Они наделены каталитическими функциями, т.е. являются ферментами, поэтому белки опреде ляют направление, скорость и теснейшуюсогласованность, сопряженность всех реакций обмена веществ.

 

        Ведущая роль белков в явлениях жизни связана с богатством и разнообразием их химическихфункций, с исключительной способностью к различным превращениям и взаимодействиям с другимипростыми и сложными веществами, входящими в состав цитоплазмы.

 

        Нуклеиновые кислоты входят в состав важнейшего органа клетки — ядра, а также цитоплазмы,рибосом, митохондрий и т. д. Нуклеиновые кислоты играют важную, первостепенную роль внаследственности, изменчивости организма, в синтезе белка.

 

        Процесс синтеза белка является очень сложным многоступенчатым процессом. Совершается он вспециальных органеллах — рибосомах. В клетке содержится большое количество рибосом. Например, укишечной палочки их около 20 000.

 

        Каким образом происходит синтез белка в рибосомах?

 

        Молекулы белков по существу представляют собой полипептидные цепочки, составленные изотдельных аминокислот. Но аминокислоты недостаточно активны, чтобы соединиться между собойсамостоятельно. Поэтому, прежде чем соединиться друг с другом и образовать молекулу белка,аминокислоты должны активироваться. Эта активация происходит под действием особых ферментов.Причем каждая аминокислота имеет свой, специфически настроенный на нее фермент.

 

        Источником энергии для этого (как и для многих процессов в клетке) служит аденозинтрифосфат(АТФ).

 

        В результате активирования аминокислота становится более лабильной и под действием того жефермента связывается с т-РНК.

 

        Важным является то, что каждой аминокислоте соответствует строго специфическая т-РНК. Онанаходит «свою» аминокислоту и переносит ее в рибосому. Поэтому такая РНК и получила названиетранспортной.

 

        Следовательно, в рибосому поступают различные активированные аминокислоты, соединенные сосвоими т-РНК. Рибосома представляет собой как бы конвейер для сборки цепочки белка из поступающих внего различных аминокислот (рис. 13 А и Б).

 

Биосинтез белка Рис. 1 1 13А.
Биосинтез белка Рис. 1 1 13Б.

 

        Возникает вопрос: от чего зависит порядок связывания между собой отдельных аминокислот? Ведьименно этот порядок и определяет, какой белок будет синтезирован в рибосоме, так как от порядкарасположения аминокислот в белке зависит его специфика. В клетке содержится более 2000 различных построению и свойствам специфических белков.

 

        

 

        Оказывается, что одновременно с т-РНК, на которой «сидит» своя аминокислота, в рибосомупоступает «сигнал» от ДНК, которая содержится в ядре. В соответствии с этим сигналом в рибосомесинтезируется тот или иной белок, тот или иной фермент (так как ферменты являются белками).

 

        Направляющее влияние ДНК на синтез белка осуществляется не непосредственно, а с помощьюособого посредника, той формы РНК, которая получила название матричной или информационной РНК (м-РНК или и-РНК).

 

        Информационная РНК синтезируется в ядре иод влиянием ДНК, поэтому ее состав отражает составДНК. Молекула РНК представляет собой как бы слепок с формы ДНК.

 

        Синтезированная и-РНК поступает в рибосому и как бы передает этой структуре план — в какомпорядке должны соединяться друг с другом поступившие в рибосому активированные аминокислоты, чтобысинтезировался определенный белок. Иначе, генетическая информация, закодированная в ДНК,передается на и-РНК и далее на белок.

 

        Молекула информационной РНК поступает в рибосому и как бы прошивает ее. Тот ее отрезок, которыйнаходится в данный момент в рибосоме, определенный кодоном (триплет), взаимодействует совершенноспецифично с подходящим к нему по строению триплетом (антикодоном) в транспортной РНК, котораяпринесла в рибосому аминокислоту. Транспортная РНК со своей аминокислотой подходит копределенному кодону и-РНК и соединяется с ним; к следующему, соседнему участку и-РНКприсоединяется другая т-РНК с другой аминокислотой и так далее, до тех пор пока не будет считана всяцепочка и-РНК и пока не нанижутся все аминокислоты в соответствующем порядке, образуя молекулубелка. А т-РНК, которая доставила аминокислоту к определенному участку полипептидной цепи,освобождается от своей аминокислоты и выходит иэ рибосомы. Затем снова в цитоплазме к ней можетприсоединиться нужная аминокислота, и она снова перенесет ее в рибосому. В процессе синтеза белкаучаствует одновременно не одна, а несколько рибосом — полирибосомы.

 

        Основные этапы передачи генетической информации: синтез на ДНК как на матрице и-РНК(транскрипция) и синтез в рибосомах полипептидной цепи по программе, содержащейся в и-РНК(трансляция), универсальны для всех живых существ. Однако временные и пространственныевзаимоотношения этих процессов различаются у про- и эукариотов.

 

        У организмов, обладающих па стоящим ядром (животные, растения), транскрипция и трансля циястрого разделены в пространстве и времепи: синтез различных РНК происходит в ядре, после чегомолекулы РНК должны покинуть пределы ядра, пройдя через ядерную мембрану (рис. 13 А). Затем вцитоплазме РНК транспортируются к месту синтеза белка— рибосомам. Лишь после этого паступаетследующий этап — трансляция.

 

Биосинтез белка Рис. 1 1 13А.

 

        У бактерий, ядерное вещество которых не отделено от цитоплазмы мембраной, транскрипция итрансляция идут одновременно (рис. 13 Б).

 

Биосинтез белка Рис. 1 1 13Б.

 

        Современные схемы, иллюстрирующие работу генов, построены на основании логического анализаэкспериментальных данных, полученных с помощью биохимических и генетических методов. Применениетонких электронно-микроскопических методов позволяет в буквальном смысле слова увидеть работунаследственного аппарата клетки. В последнее время получены электронно-микроскопические снимки, накоторых видно, как на матрице бактериальной ДНК, в тех участках, где к ДНК прикреплены молекулы РНК-полимеразы (фермента, катализирующего транскрипцию ДНК в РНК), происходит синтез молекул и-РНК.Нити и-РНК, расположенные перпендикулярно к линейной молекуле ДНК, продвигаются вдоль матрицы иувеличиваются в длине. По мере удлинения нитей РНК к ним присоединяются рибосомы, которые,продвигаясь, в свою очередь, вдоль нити РНК по направлению к ДНК, ведут синтез белка.

 

        Из всего сказанного следует, что местом синтеза белков и всех ферментов в клетке являютсярибосомы. Образно выражаясь, это как бы «фабрики» белка, как бы сборочный цех, куда поступают всематериалы, необходимые для сборки полипептидной цепочки белка иэ аминокислот. Природа жесинтезируемого белка зависит от строения и-РНК, от порядка расположения в ней нуклеоидов, а строениеи-РНК отражает строение ДНК, так что в конечном итоге специфическое строение белка, т. е. порядокрасположения в нем различных аминокислот, зависит от порядка расположения нуклеоидов в ДНК, отстроения ДНК.

 

        Изложенная теория биосинтеза белка получила название матричной теории. Матричной эта теорияназывается потому, что нуклеиновые кислоты играют как бы роль матриц, в которых записана всяинформация относительно последовательности аминокислотных остатков в молекуле белка.

 

        Создание матричной теории биосинтеза белка и расшифровка аминокислотного кода являетсякрупнейшим научным достижением XX века, важнейшим шагом на пути к выяснению молекулярногомеханизма наследственности.

26.06.2015; 09:34
хиты: 564
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь