пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Билет 6

Вопрос 1 Ферменты. Общие сведения о белковых катализаторах биохимических реакций. Биомедицинское значение ферментов. Классификация ферментов и номенклатура Ферменты в клинической диагностике.

Ферменты – это вещества, без которых невозможно течение множества процессов в организме. На самом деле, ферменты принимают участие не только в переваривании пищи, но и в работе центральной нервной системы, в процессах роста новых клеток. Ферменты относятся к белкам. Но в их составе есть и минеральные соли. Ферментов достаточно много и каждый обладает совершенно уникальным действием на узкий круг веществ. Ферменты не могут заменять друг друга. Ферменты могут действовать только при температуре, не превышающей пятидесяти четырех градусов. Но и слишком низкие температуры тоже не способствуют их активности. Ведь «работают» ферменты в человеческом теле и оптимальна для них именно температура тела. Губителен для ферментов солнечный свет и кислород. Метаболизм жиров, белков, минералов и углеводов проходит только в присутствии ферментов. Ферменты действуют в кишечнике. При этом витамин Е помогает ферментам достичь в неизменном состоянии кишечника. Работа ферментов значительно сокращает энергетические затраты организма на переработку пищи. Если Вы не любитель сырых фруктов и овощей, то, скорее всего, у Вас в организме ферментов вырабатывается недостаточно. Все ферменты разделяются на три основных группы: амилаза, липаза и протеаза. Фермент амилаза необходим для переработки углеводов. Под воздействием амилазы углеводы разрушаются и легко всасываются в кровь. Амилаза присутствует как в слюне, так и в кишечнике. Амилаза тоже бывает разной. Для каждого вида сахаров существует собственный вид этого фермента. Липаза – это ферменты, которые присутствуют в желудочном соке и вырабатываются поджелудочной железой. Липаза необходима для усвоения организмом жиров. Протеаза – это группа ферментов, которые присутствуют в желудочном соке и тоже вырабатываются поджелудочной железой. Кроме этого, протеаза присутствует и в кишечнике. Протеаза необходима для расщепления белков. Существуют такие ферменты, которые запускают процессы обмена веществ внутри клеток. Практически нет в организме такой системы, которая не вырабатывала бы свои ферменты. Существуют и продукты питания, в которых есть собственные ферменты. Это авокадо, ананасы, папайя, манго, бананы и различные пророщенные зерна. В организме вырабатываются и так называемые протеолитические ферменты, которые не только участвуют в пищеварении, но еще и снимают воспалительные процессы. К таким ферментам относят панкреатин, пепсин, ренин, трипсин и химотрипсин. Наиболее распространенным в лекарственной форме является фермент панкреатин. Его применяют в случае нехватки ферментов в организме, для облегчения переваривания пищи, при аллергиях на еду, различных тяжелых нарушениях иммунитета, а также других сложных внутренних болезнях. Если Вы страдаете ферментной недостаточностью, то предпочтительнее использовать такие лекарства, которые содержат сразу несколько ферментов. Но есть препараты, содержащие только один какой-либо фермент. Обычно ферментные препараты нужно употреблять во время еды, но иногда эффективнее прием после еды. Лекарственные средства, которые содержат ферменты, следует держать в холодильнике. Ферментные препараты смело можно назвать БАД (биологически активными добавками). Но применять их бесконтрольно на протяжении длительного времени все же не стоит. Лучше проконсультироваться с врачом.

 

 

Первоначально ферментам давали названия, образуемые путем добавления окончания 2.gif к названию субстрата, на который данный фермент действует. Так, ферменты, гидролизующие крахмал (амилон), были названы амилазами; ферменты, гидролизующие жиры (3.gif-липазами; ферменты, гидролизующие белки (протеины), — протеиназами. Позднее ферментам, катализирующим сходные по типу реакции, стали давать название, указывающее тип соответствующей реакции — дегидрогеназы, оксидазы. декарбоксилазы, ацилазы и т.д. Многие из этих названий используются и теперь.

Номенклатура, введенная Международным биохимическим союзом (IUB), на первый взгляд кажется сложной и громоздкой, но зато она является однозначной. Главный ее принцип состоит в том, что ферменты называют и классифицируют в соответствии с типом катализируемой химической реакции и ее механизмом; это существенно облегчает систематизацию данных, относящихся к различным аспектам метаболизма. Основные черты системы, введенной IUB, состоят в следующем.

1. Реакции и ферменты, которые их катализируют, подразделяются на шесть классов, в каждом из которых имеется несколько подклассов (от четырех до 13).

2. Название фермента состоит из двух частей: первая часть — название субстрата (или субстратов); вторая указывает тип катализируемой реакции и оканчивается на - аза.

3. Дополнительная информация, если она необходима для уточнения, заключается в скобки. Например, фермент, катализирующий реакцию 4.gif имеет номер 1.1.1.37 и называется L-малат: NADf оксидоредуктаза (декарбоксилирующая).

4. Каждый фермент имеет кодовый номер по классификации ферментов (КФ): первая цифра характеризует класс реакции, вторая — подкласс и третья — подподкласс. Четвертая цифра указывает порядковый номер фермента в его подподклассе. Таким образом, КФ 2.7.1.1 означает, что фермент относится к классу 2 (трансфераза), подклассу 7 (перенос фосфата) и подподклассу 1 (акцептором фосфата является спирт). Последняя цифра обозначает фермент гексокиназу, или АТР: 5.gif-гексозо-б-фосфотрансферазу, т. е. фермент, катализирующий

перенос фосфата с АТР на гидроксильную группу атома углерода в шестом положении глюкозы.

Ниже представлены все шесть классов ферментов и некоторые конкретные примеры. В скобках указано рекомендуемое название.

1. Оксидоредуктазы.Ферменты, катализирующие окислительно-восстановительные реакции с участием двух субстратов, S и S:

image1.gif

Катализируют реакции, в которых участвуют такие группы, как 6.gif Некоторые подклассы:

1.1. Ферменты, действующие на группу СН— ОН (донор электронов). Например:

image2.gif

1.4. Ферменты, действующие на группу Н-NH, (донор электронов). Например:

1.4.1.3. L-Глутамат: NAD(P)+ оксидоредуктаза (дезаминирующая) [глутаматдегидрогеназа из печени животных]. Запись 7.gif означает, что акцептором электронов может служить либо 8.gif либо 9.gif лутамат 10.gif

image3.gif

2. Трансферазы. Ферменты, катализирующие перенос группы G (отличной от атома водорода) с субстрата S на субстрат 11.gif

image4.gif

Катализируют перенос одноуглеродных групп, альдегидных или кетонных остатков, а также ацильных, алкильных, гликозильных групп и групп, содержащих фосфор и серу. Некоторые подклассы:

2.3. Ацилтрансферазы. Например:

2.3.1.6. Ацетил-СоА:холин О-ацетилтрансфераза [холин-ацетилтрансфераза]

image5.gif

2.7. Ферменты, катализирующие перенос группы, содержащей фосфор. Например:

2.7.1.1. АТР: 12.gif-гексоза 13.gif-фосфотрансфераза [гек-сокиназа]

image6.gif

3. Гидролазы. Ферменты, катализирующие гидролиз эфирных, сложноэфирных, пептидных и гликозильных связей, кислотных ангидридов, связей С— С, С-галоида и 14.gif Например:

3.1. Ферменты, действующие на сложноэфирные связи. Например:

3.1.1.8. Ацилхолин—ацилгидролаза [псевдохо-линэстераза]

image7.gif

3.2. Ферменты, действующие на гликозильные соединения. Например:

image8.gif

3.4. Ферменты, действующие на пептидные связи.

Классификация (с подразделением на 11 подклассов) учитывает различия между пептидазами и протеазами, выделяет ферменты, гидролизующие дипептиды или более крупные пептиды, отщепляющие одну или большее число аминокислот, атакующие связь на С-или 15.gif-конце. Протеиназы в соответствии с механизмом катализа подразделяются на сериновые, тиоловые и металлозависимые. Например:

3.4.2.1. Сериновые протеиназы. Например: химотрипсин, трипсин, плазмин, факторы свертывания крови 16.gif

Карбоксильные (кислые) протеиназы. Например: пепсины А, В и С.

4. Лиазы. Ферменты, отщепляющие группы от субстратов по негидролитическому механизму, с образованием двойных связей.

image9.gif

Ферменты, действующие на связи 17.gif и С—галоид. Некоторые подгруппы:

4.1.2. Альдегид-лиазы. Например:

4.1.2.7. Кетозо-1-фосфат-альдолаза [альдолаза]

image10.gif

4.2. Углерод—кислород лиазы. Например:

image11.gif

5. Изомеразы. В этот класс включены все ферменты, катализирующие взаимопревращения оптических, геометрических и позиционных изомеров. Некоторые подклассы:

5.2. Цис-гпранс-изотлерязы. Например:

5.2.1.3. все-трянс-Ретиналь 11 -цис-транс-изоме-раза [ретинальизомераза]

image12.gif

5.3. Ферменты, катализирующие взаимопревращение альдоз и кетоз. Например:

5.3.1.1. 18.gif лицеральдегид-3-фосфаткетол-изо-мераза [триозофосфатизомераза]

image13.gif

6. Лигазы. (от лат. лигаре — связывать). Ферменты, катализирующие соединение двух молекул, сопряженное с разрывом пирофосфатной связи АТР или подобного соединения. В этот класс включены ферменты, катализирующие реакции, в ходе которых образуются связи 19.gif. Некоторые подклассы:

6.3. Ферменты, катализирующие образование связей 20.gif Например:

6.3.1.2. L-Глутамат:аммиак лигаза (ADP) [глу-таминсинтетаза]

image14.gif

6.4. Ферменты, катализирующие образование связей 21.gif Например:

6.4.1.2. Ацетил-СоА: 22.gif лигаза (ADP) [ацетил-Со А—карбоксилаза]

image15.gif

Вопрос 2 Основные типы брожения.

В основе процессов распада безазотистых органических веществ лежат различные формы брожения, которые постоянно происходят в природе. Брожение – анаэробное дыхание, при котором микроорганизмы используют выделяющуюся энергию для своей жизнедеятельности.

Впервые биологическую природу брожения открыл в 60-х годах 19 в. гениальный французский ученый Луи Пастер. Пастеру удалось на примере молочнокислого, спиртового и маслянокислого брожения доказать, что эти процессы вызываются жизнедеятельностью микроорганизмов.

Спиртовое брожение углеводов вызывают дрожжи (Saccharomyces cerevisiae), некоторые виды бактерий (Sarcina ventriculi) и отдельные представители мукоровых грибов рода Mucor. При спиртовом брожении молекула гексозы распадается на этанол и углекислый газ. В ходе брожения образуется много промежуточных продуктов — гексозомонофосфат, фруктозодифосфат, фосфотриозы, фосфоглицериновая кислота, фосфопировиноградная кислота, пировиноградная кислота, уксусный альдегид и, наконец, этиловый спирт.

При содержании в сбраживаемом растворе более чем 30% сахара часть его остается неиспользованной, так как при этих условиях образуется до 15% спирта, а при такой концентрации спирт подавляет жизнедеятельность дрожжей. Поэтому натуральные вина содержат не более 15% спирта. Главное преимущество чистых культур дрожжей заключается в том, что брожение виноградного сока протекает и заканчивается быстро, а отсутствие посторонней микрофлоры позволяет получать вина хорошего вкуса и аромата (с хорошим «букетом»). По окончании брожения молодое вино стабилизируют и дают ему созреть. Эти процессы занимают несколько месяцев, а при изготовлении высококачественных красных вин — даже несколько лет. В течение первого года во многих красных винах происходит второе, спонтанное брожение — яблочно-молочнокислое, которое вызывается рядом молочнокислых бактерий (Prdiococcus, Leuconostoc). В результате этого яблочная кислота винограда превращается в молочную кислоту и СО2, т. е. дикарбоновая кислота превращается в монокарбоновую, и кислотность вина уменьшается, оно становится высококачественным.

Уксуснокислое брожение — биологический окислительный процесс, при котором с помощью уксуснокислых бактерий спирт окисляется в уксусную кислоту. Если какую-либо жидкость, содержащую небольшое количество спирта (вино, пиво), оставить открытой, то в ней постепенно появляется уксусная кислота и кожистая пленка (уксусная матка) на поверхности. Уксуснокислые бактерии объединены в род Acetobacter, содержащий ряд видов и подвидов. Этиловый спирт под влиянием уксуснокислых бактерий подвергается окислению, в результате которого вначале образуется уксусный альдегид, а затем — уксусная кислота. При использовании специальных рас уксуснокислых бактерий максимальный выход уксуса достигает 14,5%. Уксуснокислые бактерии превращают ряд многоатомных спиртов в сахар. Одна из таких реакций используется для получения сорбозы из сорбитола. Сорбоза — промежуточный продукт синтеза аскорбиновой кислоты. Она применяется в качестве суспендирующего агента при изготовлении многих лекарственных препаратов. Уксуснокислые бактерии могут наносить вред в виноделии и пивоваренной промышленности, вызывая прокисание вина и пива.

Молочнокислое брожение — широко распространенное биохимическое явление, давно известное на примере скисания молока. Под влиянием молочнокислых бактерий (семействоLactobacillaceae)лактоза расщепляется на составляющие ее гексозы — глюкозу и галактозу, которые затем специфическими ферментами превращаются в молочную кислоту. Свертывание молока происходит вследствие того, что молочная кислота отщепляет кальций от казеина, белок превращается в параказеин и выпадает в осадок. Молочнокислые бактерии широко распространены в природе. Они обнаруживаются в молоке, воздухе, на коже, шерсти, в тонком и толстом кишечнике и представлены большим количеством видов палочковидных и кокковидных бактерий, различающихся не только по морфологии, но и физиологическим свойствам (по использованию различных источников углерода и азота).

Маслянокислое брожение также широко встречается в природе. Возбудитель маслянокислого брожения был открыт Л. Пастером. На примере маслянокислого брожения Л. Пастер разработал учение об анаэробах. Типичный представитель бактерий маслянокислого брожения — азотфиксирующий Clostridium pasteurianum. Маслянокислые бактерии в больших количествах встречаются в почве, навозе, на растениях, в молоке, сыре. Многие из них являются анаэробами и относятся к роду Clostridium.

Маслянокислое брожение — сложный биохимический процесс расщепления углеводов, в ряде случаев жиров и белков, на масляную кислоту, углекислоту и воду, при этом образуется много побочных продуктов — уксусная, молочная, пропионовая и другие кислоты.

Из числа других форм брожения чрезвычайно важным является брожение целлюлозы (клетчатки), в которой заложены огромные запасы углерода. Разложение целлюлозы, которая в количественном отношении представляет один из основных компонентов растительных тканей, осуществляется главным образом высоко специализированными в отношении питания аэробными и анаэробными микроорганизмами. Среди аэробных бактерий, расщепляющих целлюлозу, наиболее важны скользящие бактерии рода Cytjphaga. Целлюлоза — единственное вещество, которое они могут использовать в качестве источника углерода. Цитофаги быстро растворяют и окисляют целлюлозу.


25.06.2015; 22:12
хиты: 146
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь