пользователей: 21258
предметов: 10464
вопросов: 177980
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ


Преобразования плоскости. Линейные отображения. Аффинные отображения. Произведение отображений. Аффинные преобразования (операторы). Ортогональные преобразования.

            Преобразования плоскости: Под отображением f плоскости Р в плоскость R понимают закон или правило, по которому каждой точке плоскости Р сопоставлена некоторая определенная точка на плоскости R. Точки на плоскости Р – прообразы, на R – Образы. Такие отображения для которых две плоскости совпадают , называются преобразованиями.

            Линейные отображения: Отображение f:P->R называется линейным, если существуют такие декартовы системы координат на плоскостях P и R, в которых f может быть задано формулами:(1)

            Аффинные отображения: Взаимно однозначные линейные отображения называются аффинными отображениями, т.е. определяется формулой (1) при условии

            Произведение отображений: Пусть даны отображения f:P->R и g:R->S. Отображение h, сопоставляющее точке А на плоскости P точку g(f(A)) на плоскости S, называют произведением отображения f на отображение g и обозначают gоf. Отображение, которое производится первым, пишется справа.

            Аффинные преобразования (операторы): При аффинном преобразовании прямая линия переходит в прямую линию, отрезок в отрезок, параллельные прямые в параллельные.Каждое аффинное преобразование представляется собой произведение ортогонального преобразования и сжатий к двум взаимно перпендикулярным прямым.

            Ортогональное преобразование: Рассмотрим две плоскости P и R’ и сопоставим каждой точке плоскости Р основание перпендикуляра, опущенное из этой точки на плоскость R. Это отображение, называемое ортогональным преобразованием. Иными словами, перемещение плоскости – параллельный перенос, поворот и осевая симметрия.


12.06.2014; 13:48
хиты: 225
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь