пользователей: 21244
предметов: 10456
вопросов: 177505
Конспект-online
зарегистрируйся или войди через vk.com чтобы оставить конспект.
РЕГИСТРАЦИЯ ЭКСКУРСИЯ


Линии второго порядка. Эллипс. Гипербола. Канонические уравнение. Фокальные расстояния. Эксцентриситеты.

                        Линии второго порядка: Уравнение линии второго порядка Ax2+2Bxy+Cy2+2Dx+2Ey+F=0.  Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением   называется эллипсом, а уравнение каноническим.  - мнимый эллипс.  - две мнимые пересекающиеся прямые.   - гипербола и её канонической уравнение.   - парабола.  - пара параллельных прямых. - пара мнимых параллельных прямых.

                        Эллипс: Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением   называется эллипсом, а уравнение каноническим.

                        Оси координат канонической системы – оси симметрии эллипса, а центр – центр симметрии. С2=a2-b2, Два фокуса F1(c,0) и F2(-c,o). Экцентриситет e=c\a. Расстояние от произвольной точки M(x,y), лежащей на эллипсе до каждого из фокусов является линейной функцией от ее абциссы х : Для того чтобы точка лежала на эллипсе, необходимо и достаточно, чтобы сумма ее расстояний до фокусов равнялось большой оси эллипса 2а.

                        Гипербола: Линия, которая в некоторой декартовой прямоугольной системе координат может быть задана уравнением  называется эллипсом, а уравнение каноническим.

             Оси координат канонической системы – оси симметрии гиперболы, а центр – центр симметрии. Прямые с уравнениями y=bx\a и y=-bx\a в канонической системе координат называются асимптотами гиперболы. Экцентриситет e=c\a. C2=a2+b2  Два фокуса F1(c,0) и F2(-c,o). Для того чтобы точка лежала на гиперболе, необходимо и достаточно, чтобы разность ее расстояний до фокусов по абсолютной величине равнялась вещественной оси гиперболы. Касательная к гиперболе есть биссектриса угла между отрезками, соединяющими эту точку с фокусами.


12.06.2014; 13:48
хиты: 231
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2016. All Rights Reserved. помощь