пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

29.Четвёртая глобальная научная революция.

Последние три десятилетия XX в. ознаменовались новыми радикальными научными достижениями. Эти достижения можно характеризовать как четвертую глобальную научную революцию, в ходе которой формировалась постнеклассическая наука.

Особенности:

Во-первых, это - ориентация постнеклассической науки на исследование весьма сложных, исторически развивающихся систем. Представления об эволюции подобных систем вводятся в картину физической реальности через новейшие идеи современной космологии (концепция «Большого взрыва» и др.), через изучение «человекоразмерных» комплексов (объекты экологии, включая биосферу в целом, системы «человек - машина» в виде сложных информацион­ных комплексов и т.д.), и, наконец, через разработку идей термо­динамики неравновесных процессов, приведших к возникновению синергетики.Во-вторых, важное направление исследований постнеклассической науки составляют объекты биотехнологии, и в первую очередь, генетической инженерии. Успехи последней на рубеже XX-XXI вв. определяются новейшими достижениями биологии - в плане расшифровки генома человека, постановки и решения проблем клонирования высших млекопитающих (эти проблемы, заметим, включают не только естественнонаучный, но и социально-этический аспекты).В-третьих, для постнеклассической науки характерен новый уровень интеграции научных исследований, нашедший выражение в комплексных исследовательских программах, реализация которых требует участия специалистов различных областей знания.

Космология последних десятилетий XX века. Концепции «Большого взрыва» и «раздувающейся Вселенной»

Новую теорию, созданную в 80-х го­дах XX века, в основном усилиями отечественных ученых, назва­ли теорией раздувающейся Вселенной. Согласно этой теории, в процессе раздувания первоначальная Вселенная (Правселенная) расщепилась на множество отдельных Вселенных, различающихся всеми фундаментальными константами, которые определяют физические свойства мира. Наша Вселенная - одна из них. Тако­го рода идеи отстаивают в настоящее время некоторые российские ученые (А.Д. Линде, С.С. Григорян и др.).

Область «начала мира» - предмет новейшего научного направ­ления, получившего наименование квантовой космологии. До сих пор проверка теоретических выводов о процессах вблизи порога «рождения Вселенной» может основываться лишь на косвенных данных. Знаменательным стало то, что впервые в истории науки был «перекинут мост» между двумя, казалось быпротивоположными, полюсами научных знаний — космологией, изучающей Вселенную с ее фантастическими расстояниями, и квантовой физикой, исследующей явления в ультрамалом. Оказа­лось, что, по существу, — это два аспекта одного и того же научно­го знания. В природе все взаимосвязано: изучая свойства микро­частиц, физики уточняют свое представление о фазах эволюции Вселенной; космологические же данные используются для выбора между различными вариантами теории элементарных частиц.

Клонирование: достижения и проблемы

Клонирование органов и тканей - это задача номер один в области трансплантологии, травматологии и в других областях медицины. При пересадке клонированного органа не надо думать о подавлении реакции отторжения. Клонированные органы станут спасением для людей, попавших в автомобильные аварии или какие-нибудь иные катастрофы, или для людей, которым нужна радикальная помощь из-за заболеваний сердца, печени и т.п. Самый наглядный эффект клонирования - дать возможность бездетным людям иметь своих собственных детей.Однако клонирование высших млекопитающих, включая человека, содержит еще много невыясненных наукой проблем

Синергетика как новое миропонимание конца XX века

Постепенно в науке накапливалось все большее число фактов, свидетельствовавших о возникновении упорядоченных структур и феномена самоорганизации в неживой природе при наличии определенных условий. Даже повседневные наблюдения свидетельствуют о том, что и в неживой природе, - наряду с дезорганизацией, - происходит также и самоорганизация, которая проявляется в возникновении новых матери­альных структур. Считается установленным, что процессы самоорганизации могут происходить в сравнительно простых физических и химических средах неорганической природы. А это означает, что простейшая, элементарная форма самоорганизации имеет место уже в рамках физической и химической форм движения материи. Чем сложнее форма движения материи, тем выше уровень ее самоорганизации.

Указанные наблюдения и обобщения привели к возникновению синергетики - междисциплинарного научного направления, изучающего общие и универсальные механизмы самоорганизации, т.е. механизмы самопроизвольного возникновения и относительно устойчивого существования макроскопических упорядоченных структур самой различной природы. Синергетика стирает, как казалось, непреодолимые грани между физическими и химическими процессами, с одной стороны, и биологическими и социальными процессами - с другой, т.к. исследует общие механизмы самоорганизации и тех, и других.Зарождение синергетики произошло в нашей стране. В 60-х гг. XX в. ученым Б.Н. Белоусовым были начаты интересные эксперименты с так называемыми автокаталитическими химическими реакциями, которые затем были продолжены А.М. Жаботинским. Позднее реакция Белоусова — Жаботинского послужило экспе­риментальной основой для построения математической моделисамоорганизующихся процессов в бельгийской школе лауреата Нобелевской премии И.Р. Пригожина (1917-2003).

30.Синергетика и коэволюция.

Синергетика - наука о законах самоорганизации сложных развивающихся систем. Основоположники (Пригожин, Хакен , в России Курдюмов).

Термин “синергетика” использовал Г. Хакен. Она изучает любые самоорганизующиеся системы, состоящие из многих подсистем (электроныатомымолекулы, клетки, нейроны, органы, сложные многоклеточные организмы, люди, сообщества людей).

Стремится показать, как из хаоса возникают многообразные формы сложноорганизованной физической реальности. Тем самым перебрасывается как бы мостик между физикой и биологией. Биологическая теория говорила о созидании в процессе эволюции все более сложных и упорядоченных живых систем, а термодинамика - о разрушении. Эти коллизии между физикой и биологией требовали своего разрешения.

Современные концепции самоорганизации позволяют устранить традиционный парадигмальный разрыв между эволюционной биологией и физикой.

Синергетика призвана решить задачу, как из хаоса возникает порядок. Ведь суть всякой организации состоит в упорядоченности элементов системы.

В процессе порождения хаосом упорядоченных организованных систем обязательно появятся качественные переходы, т.е. возникнут такие ситуации, когда непрерывность прерывается, а качественная определенность процесса преобразуется. В синергетике для обозначения такого скачкообразного преобразования вводится название бифуркация. В процессе движения от хаоса к порядку, который представляет собой процесс преобразования качественной определенности, спонтанно возникает неопределенность, порождаемая бифуркациями.

Синергетика перебросила двойной мостик от мира неорганического к живым системам:

1. Она выявила аналогию структур функционирования физико-химических и биологических систем.

2. Показала необходимость эволюции неорганических систем в направлении к органическим.

Благодаря математической форме используемых моделей синергетика открыла новые перспективы использования знания, полученного при исследовании физико-химических систем, для изучения органических и социальных систем.

Понятие хаоса играло немаловажную роль на протяже­нии всей истории развития человеческой мысли. С хаосом связывались представления о гибельном беспорядке, о не­различимой пучине, зияющей бездне. Собственно, такое представление является наиболее распространенным и в обыденной жизни.

Следует отметить высокий темп идей и открытий при описании синергетических явлений во всех отраслях науки.

Синергетика - наука о самоорганизации простых систем, о превращении хаоса в порядок. Возникшие сложные упорядоченные системы попадают под действие конкуренции и отбора. Как утверждает Хакен, это приводит в определенном смысле к обобщенному дарвинизму, действие которого распространяется не только на органический, но и на неорганический мир.

Объект изучения синергетики, независимо от его природы, должен удовлетворять следующим требованиям:

1. Система должна быть открытой, т. е. обмениваться веществом и энергией с окружающей средой;

2. Система должна быть достаточно далеко от точки термодинамического равновесия, т. е. в состоянии, близком к потере устойчивости;

3. Обладать достаточным количеством элементов, взаимодействующих между собой;

4. Иметь положительную обратную связь, при котором изменения, появляющиеся в системе, не устраняются, а накапливаются и усиливаются, что приводит к возникновению нового порядка и структуры;

5. Сопровождаться нарушением симметрии, т. к. изменения приводят к разрушению старых и образованию новых структур;

6. Скачкообразно выходить из критического состояния при переходе на более высокий уровень упорядоченности. Скачок - это крайне нелинейный процесс, при котором малые изменения параметров системы вызывают очень сильные изменения ее состояния и переход в новое качество.

Стартовой точкой для всех исследований в области синергетики является адекватное описание состояния системы на разных уровнях.

Важно иметь в виду, однако, что описание таких состояний системы на различных уровнях может относиться к совершенно разным количествам объектов, а также к абстрактным понятиям, например, к мнению или поведению людей или целых социальных групп. Описание поведения системы на различных уровнях может быть выполнено с помощью так называемого вектора состоянии.

Следующее понятие, используемое в синергетике - управляющий параметр (императив, доминанта, идея, миссия, философема, постулат), который может быть представлен как одиночным, так и несколькими управляющими параметрами. Их количество фиксировано и налагается на систему извне - управляющие параметры не меняются по мере изменения системы.

Синергетика фокусирует свое внимание на тех ситуациях, в которых поведение системы изменяется качественно при изменении управляющих параметров.

Если структура сохраняется при изменении условий среды, т. е. управляющих параметров, то эта структура называется устойчивой или структурно устойчивой. Но если структура изменяется, мы говорим об относительной неустойчивости. Как было сказано прежде, синергетика фокусирует свое внимание на качественных изменениями тех случаях неустойчивости, которые вызваны изменением параметров управления. В условиях нового управляющего параметра система сама создает специфические структуры, что и называется самоорганизацией.

Во многих случаях поведение системы, близкое к таким точкам неустойчивости, может зависеть от поведения очень немногих переменных, можно даже сказать, что поведение отдельных частей системы просто определяется этими немногими факторами. Эти факторы называются параметрами порядка, и здесь нужно избегать представления о том, что эти параметры заботятся только о порядке; они могут также представлять или управлять беспорядочные, хаотические состояния или управлять ими.

Параметры порядка играют доминирующую роль в концепции синергетики. Они “подчиняют” отдельные части, т. е. определяют поведение этих частей. Связь между параметрами порядка и отдельными частями системы называется принципом подчинения. С определением параметров порядка поведение системы можно считать описанным. Отпадает необходимость описания поведения системы посредством описания отдельных ее частей, нам нужно иметь дело или описывать поведение только параметров порядка. Другими словами, мы получаем здесь огромное информационное сжатие. Такое информационное сжатие, между прочим, типично для любого языка.

Отдельные части в свою очередь сами генерируют параметр порядка своим коллективным поведением. Это называется круговая причинная связь. В технических системах такая круговая причинная связь известна как обратная связь.

Однако, в отличие от технических систем, в которых параметр порядка фиксирован с самого начала (инженером), например, в форме устройства управления, в синергетических системах параметры порядка создаются отдельными частями системы.

Систематическое представление дает представление о поведении параметров порядка, поскольку от них исходят типичные виды поведения систем. Понятие информационного сжатия, упомянутое выше, исходит из принципа подчинения и дает огромное преимущество для описания поведения сложной системы в относительно простых условиях.

Существует фундаментальное различие между поведением параметров порядка и подчиненных частей с течением времени. Параметры порядка реагируют на возмущения извне медленно, а части - быстро. Можно было бы даже сказать: параметры порядка живут дольше, части же живут меньше (в своей поведенческой динамике).

Коэволюция - термин, используемый современной наукой для обозначения механизма взаимообусловленных изменений элементов, составляющих развивающуюся целостную систему. Возникнув в биологии, понятие "К." постепенно приобретает статус общенаучной категории. В философской литературе применяется, главным образом, в двух базовых смыслах˸ в широком - когда термином "К." обозначается совокупная, взаимно адаптивная изменчивость частей в рамках любых биосистем (от молекулярного и клеточного вплоть до уровня биосферы в целом). Примером таких отношений служат, к примеру, взаимные изменения видов-партнеров в экосистемах "паразит - хозяин", "хищник - жертва". Результатом такой коадаптивной изменчивости должна быть как сохранение биосистемы в уже достигнутом оптимальном состоянии, так и её совершенствование. В природе коэволюционное становление и сохранение биосистем осуществляется как объективный процесс в рамках естественного отбора, который из всех возможных трансформаций тех или иных компонентов системы оставляет лишь взаимно совместимые.

В более узком смысле понятие "К." используется для обозначения процесса совместного развития биосферы и человеческого общества. Концепция К. природы и общества, с которой первым выступил Н.В. Тимофеев-Ресовский (1968), должна определить оптимальное соотношение интересов человечества и всей остальной биосферы, избежав при этом двух крайностей˸ стремления к полному господству человека над природой ("Мы не можем ждать милостей от природы..." - И. Мичурин) и смирения перед ней ("Назад, в природу!" - Руссо). Согласно принципу К., человечество, для того, чтобы обеспечить свое будущее, должно не только изменять биосферу, приспосабливая её к своим потребностям, но и изменяться само, приспосабливаясь к объективным требованиям природы. Именно коэволюционный переход системы "человек - биосфера" к состоянию динамически устойчивой целостности, симбиоза и будет означать реальное превращение биосферы в ноосферу. Для обеспечения этого процесса человечество должно следовать, прежде всего, экологическому и нравственному императивам. Первое требование обозначает совокупность запретов на те виды человеческой деятельности (особенно - производственной), которые чреваты необратимыми изменениями в биосфере, несовместимыми с самим существованием человечества. Второй императив требует изменения мировоззрения людеи̌, ᴇᴦο поворота к общечеловеческим ценностям (к примеру, чувству уважения любой жизни), к умению ставить превыше всего не частные, а общие интересы, к переоценке традиционных потребительских идеалов и т.д. К сожалению, сознание людеи̌ очень консервативно и с трудом отказывается от стереотипных представлений об отношении человека к природе. B.C. Вязовкин.

 

 

 

 

 

 


10.06.2017; 10:29
хиты: 145
рейтинг:0
Гуманитарные науки
философия
философия науки
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2024. All Rights Reserved. помощь