3.1. Классификация кинематических пар
Подвижные соединения двух звеньев, называемые кинематической парой (к.п.), классифицируются по разным признакам, например, по характеру соприкосновения звеньев – на низшие, когда контакт происходит по поверхности, и высшие, когда контакт звеньев осуществляется по линии или в точке (рис.2, а, б).
Преимуществом низших к.п. является возможность передачи значительных усилий при малом износе, а достоинством высших к.п. возможность воспроизводить достаточно сложные относительные движения.
Низшие к.п. могут быть поступательными, вращательными, плоскими и пространственными, а также классифицироваться по числу условий связи, накладываемых на звенья при соединении их в к.п.
Любое тело в декартовой системе координат (рис.3) имеет 6 степеней свободы или подвижности (W=6), часть из которых уничтожается в к.п., при этом класс к.п. определяется числом накладываемых связей (6-S),
где S – число относительных движений звеньев в к.п. Например, на рис. 4а-д
приведены к.п. различных классов.
Кинематические пары и звенья механизмов изображаются упрощенно (рис.5) при соблюдении ГОСТа на обозначения звеньев и к.п.
3.2. Кинематические цепи и их классификация
Любой механизм представляет собой кинематическую цепь (к.ц.) звеньев, соединенных в кинематические пары (к.п.). К.ц. могут быть простыми и сложными, открытыми и замкнутыми, плоскими и пространственными.
В простой к.ц. каждое из ее звеньев входит в состав одной или двух к.п., а в сложной к.ц. имеются звенья, входящие в состав трех и более к.п.
|
|
|
В открытой к.ц. имеются звенья, входящие в состав одной к.п., а в замкнутой цепи каждое звено входит в состав 2-х и более к.п. (рис.6,а-в).
Если точки всех звеньев двигаются в одной или параллельных плоскостях, то к.ц. называется плоской, в противном случае к.ц. – пространственная (точки звеньев описывают плоские кривые в непараллельных плоскостях или пространственные кривые).
3.3. Понятие о степени подвижности механизма
Если в пространственной к. ц., состоящей из «n» подвижных звеньев, имеются к.п. 1-ого, 2-ого,… 5-ого класса, число которых, соответственно, p1,p2,… p5, то к. ц. имеет число степеней свободы, определяемое формулой А.П. Малышева.
W=6n-5p5-4p4-3p3-2p2-p1 (3.1)
Так как любой механизм имеет одно неподвижное звено (стойку) и «n» подвижных звеньев, то формула (3.1) может использоваться для определения W пространственного механизма, где n – число подвижных звеньев, а W – степень подвижности механизма, показывающая сколько нужно иметь ведущих звеньев (двигателей) для получения определенного движения остальных его звеньев.
Для плоского механизма степень подвижности определяется по формуле Чебышева:
W=3n-2p5-p4, (3.2)
При этом к.п. 5-ого класса существует в виде поступательных, вращательных и винтовых.
Например, кривошипно-ползунный плоский меха-низм (рис.7), в котором n=3; p5=4; p4=0,
имеет W=3·3-2·4-0=1.
При определении W необходимо учитывать возможность наличия так называемых «пассивных» звеньев, т.е. звеньев, устраняемых без формального ущерба для кинематики анализируемого механизма (рис.8).
а) W=3·4-2·6-0=0 – с пассивным звеном,
б) W=3·3-2·4-0=1 – фактически.
Кроме того, необходимо учитывать возможность наличия избыточных связей,
Рис. 8 которые не реализуются в реальном механизме, а их число q определяется разностью между числом связей в к.п. действительного и формально возможного механизмов.
На рис. 9, а показан действительный механизм, а на рис. 9, б – формально возможный механизм, имеющий функциональное назначение, аналогичное действительному механизму, но где все связи, в отличие от действительного механизма, реализованы.
Число избыточных связей q в действительном механизме равно:
q=(2p5+p4)-(2p/5+p/4)=(2·3+0)-(2·2+1)=1,
т.е. степень подвижности действительного механизма равна:
W=3n-2p5-p4+q=3·2-2·3-0+1=1.
В общем случае пространственного механизма:
W=6n-?i·pi+q, (i от 1 до 5).
3.4. Структурный анализ механизмов
Основной принцип образования рычажных механизмов был сформулирован в 1914 году профессором Л. В. Ассуром и заключается в следующем.
Схема любого механизма может быть составлена последовательным присоединением к входным (начальным) звеньям и стойке к.ц. с нулевой степенью подвижности. Такие к. ц. называются структурными группами Ассура. Примеры различных групп Ассура показаны на рис.10.
Начальное звено со стойкой образует простейший механизм 1-ого класса (рис.11).
Путем присоединения к таким механизмам различных групп Ассура можно получить механизм любой сложности.
Группы Ассура классифицируются по числу к.п., которыми они присоединяются к основному механизму. Это число определяет порядок группы. Кроме того, группа Ассура имеет класс, определяемый числом к.п., образующих наиболее сложный замкнутый контур.
Рис. 11
Состав и последовательность присоединения групп Ассура в механизме можно выразить его формулой строения. Механизм в целом классифицируется по группе наивысшего класса. На рис.12 показан пример такой классификации.
3.5. Виды механизмов и их структурные схемы
Среди всего многообразия конструкций механизмов различают: стержневые (рычажные), кулачковые, фрикционные, зубчатые механизмы, механизмы с гибкими звеньями (например, ременные передачи) и др. виды.
Менее распространенные классификации подразумевают наличие механизмов с низшими или высшими парами в плоском или пространственном исполнении и т.д.
Учитывая возможность условного превращения практически любого механизма с высшими парами в рычажный, в дальнейшем наиболее подробно рассматривается именно эти механизмы, а структурные схемы других механизмов изложены в соответствующих разделах.
Среди рычажных механизмов наиболее распространенны так называемые четырехзвенные, примеры которых представлены на рис.13, а-г.
В этих механизмах встречаются однотипные звенья: кривошип – звено, совершающее полнооборотное вращательное движение вокруг неподвижной оси; коромысло – звено, совершающее неполнооборотное вращательное движение вокруг неподвижной оси; ползун – звено, совершающее поступательное движение относительно стойки; камень – звено, совершающее поступательное движение относительно подвижной направляющей, называемой кулисой; шатун – звено, совершающее плоскопараллельное движение.