Теорема Остроградского − Гаусса:
Поток вектора напряжённости электрического поля через любую произвольно выбранную замкнутую поверхность пропорционален заключённому внутри этой поверхности электрическому заряду.
Поле равномерно заряженного бесконечного цилиндра (нити).
Бесконечный цилиндр радиуса R заряжен равномерно с линейной плотностью τ ()— заряд, приходящийся на единицу длины).
Из соображений симметрии следует, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. В качестве замкнутой поверхности мысленно построим коаксиальный с заряженным цилиндр радиуса и высотой
. Поток вектора E сквозь торцы коаксиального цилиндра равен нулю (торцы параллельны линиям напряженности), а сквозь боковую поверхность
.
По теореме Гаусса, при , откуда:
(1)
Если r < R , то замкнутая поверхность зарядов внутри не содержит, поэтому в этой области E = 0. Таким образом, напряженность поля вне равномерно заряженного бесконечного цилиндра определяется выражением (1), внутри же его поле отсутствует.