§8 Потенциал.
Связь между напряженностью и потенциалом.
Градиент потенциала.
Эквипотенциальные поверхности
Поскольку электростатическое поле является потенциальным работа по перемещению заряда в таком поле может быть представлена, как разность потенциальных энергий заряда в начальной и конечной точках пути. (Работа равна уменьшению потенциальной энергии, или изменению потенциальной энергии, взятому со знаком минус.)
Постоянную определяют из условия, что при удалении заряда q0 на бесконечность его потенциальная энергия должна быть равна нулю.
.
Различные пробные заряды q0i , помещенные в данную точку поля будут обладать в этой точке различными потенциальными энергиями:
…
Отношение Wпот i к величине пробного заряда q0i, помещенного в данную точку поля является величиной постоянной для данной точки поля для всех пробных зарядов. Это отношение называетсяПОТЕНЦИАЛОМ.
ПОТЕНЦИАЛ – энергетическая характеристика электрического поля. ПОТЕНЦИАЛ численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд.
Работу по перемещению заряда можно представить в виде
.
Потенциал измеряется в Вольтах
ЭКВИПОТЕНЦИАЛЬНЫМИ ПОВЕРХНОСТЯМИ называются поверхности равного потенциала (φ = const). Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.
Связь между напряженностью и потенциалом φ можно найти, исходя из того, что работу по перемещению заряда q на элементарном отрезке d? можно представить как
С другой стороны
- градиент потенциала.
Напряженность поля равна градиенту потенциала, взятому со знаком минус.
Градиент потенциала показывает, как меняется потенциал на единицу длины. Градиент перпендикулярен функции и направлен в сторону возрастания функции. Следовательно, вектор напряженности перпендикулярен эквипотенциальной поверхности и направлен в сторону убывания потенциала.
Рассмотрим поле, создаваемое системой N точечных зарядов q1, q2, … qN. Расстояния от зарядов до данной точки поля равны r1, r2, … rN. Работа, совершаемая силами этого поля над зарядом q0, будет равна алгебраической сумме работ сил, каждого заряда в отдельности.
гле
Потенциал поля, создаваемого системой зарядов, определяется как алгебраическая сумма потенциалов, создаваемых в этой же точке каждым зарядом в отдельности.
Связь между напряженностью и потенциалом | ![]() ![]() |
|
Разные пробные заряды q',q'',… будут обладать в одной и той же точке поля разными энергиями W', W'' и так далее. Однако отношение
Из этого выражения следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Подставив в (3.3.1.) значение потенциальной энергии (3.2.4), получим для потенциала точечного заряда следующее выражение:
Потенциал, как и потенциальная энергия, определяют с точностью до постоянной интегрирования. Поскольку физический смысл имеет не потенциал, а разность потенциалов, поэтому договорились считать, что потенциал точки, удаленной в бесконечность, равен нулю. Когда говорят «потенциал такой-то точки» – имеют в виду разность потенциалов между этой точкой и точкой, удаленной в бесконечность. Другое определение потенциала: т.е. потенциал численно равен работе, которую совершают силы поля над единичным положительным зарядом при удалении его из данной точки в бесконечность (илинаоборот – такую же работу нужно совершить, чтобы переместить единичный положительный заряд из бесконечности в данную точку поля). При этом Если поле создается системой зарядов, то, используя принцип суперпозиции, получаем:
Тогда и для потенциала
т.е. потенциал поля, создаваемый системой зарядов, равен алгебраической сумме потенциалов, создаваемых каждым из зарядов в отдельности<. А вот напряженности складываются при наложении полей – векторно. По этой причине потенциалы полей считать проще, чем напряженности. Вернемся к работе сил электростатического поля над зарядом q. Выразим работу через разность потенциалов между начальной и конечной точками:
Таким образом, работа над зарядом q равна произведению заряда на убыль потенциала. То есть
где U – напряжение. (Между прочим, хорошая аналогия с гравитационным полем:
здесь gh – имеет смысл потенциала, а m – заряда гравитационного поля). Итак, потенциал – скалярная величина, поэтому пользоваться и вычислять φ проще, чем Формулу В СИ – единица потенциала В физике часто используется единица энергии и работы, называемая электрон - вольт (эВ) – это работа, совершенная силами поля над зарядом, равным заряду электрона при прохождении им разности потенциалов 1 В, то есть: |