Фосфор. Содержание фосфора в растениях составляет около 0,2% на сухую массу. Фосфор поступает в корневую систему и функционирует в растении в виде окисленных соединений, главным образом остатков ортофосфорной кислоты (Н2Р04-, HP042-, Р043-). Физиологическое значение фосфора определяется тем, что он входит в состав ряда органических соединений, таких, как нуклеиновые кислоты (ДНК и РНК), нуклеотиды (АТФ, НАД, НАДФ), нуклеопротеиды, витамины и многих других, играющих центральную роль в обмене веществ. Фосфолипиды являются компонентами биологических мембран, причем именно присутствие фосфата в их структуре обеспечивает гидрофильность, остальная часть молекулы липофильна. Многие витамины и их производные, содержащие фосфор, являются коферментами и принимают непосредственное участие в каталитических реакциях, ускоряющих течение важнейших процессов обмена (фотосинтез, дыхание и др.). Фосфор содержится в составе такого органического соединения как фитин (Са—Mg соль инозитфосфорной кислоты), который является основной запасной формой фосфора в растении. Особенно много фитина в семенах (до 1—2 % сухой массы). При всех превращениях в растительном организме фосфор сохраняет степень окисленности. На самом деле, все превращения сводятся лишь к присоединению или переносу остатка фосфорной кислоты (фосфорилирование и трансфосфорилирование). Фосфорилирование — это присоединение остатка фосфорной кислоты к органическому соединению с образованием эфирной связи, например взаимодействие фосфорной кислоты с карбонильной, карбоксильной или спиртовой группировками. Фосфорилирование белков осуществляется ферментами протеинкиназами и контролирует протекание обменных реакций в организме, включая синтез белка и РНК, регуляцию активности ферментов, и лежит в основе работы сигнальных цепей. Фосфорилироваться могут и другие соединения. Например, при фосфорилировании Сахаров образуются сахарофосфаты — эфиры Сахаров и фосфорной кислоты. Эти соединения, более лабильные и реакционноспособные, чем свободные сахара, играют существенную роль при дыхании, взаимных превращениях углеводов, их синтезе. Трансфосфорилирование — это процесс, при котором остаток фосфорной кислоты, включенный в состав одного органического вещества, переносится на другое органическое вещество. Ряд важнейших в биологическом отношении фосфорных соединений содержит несколько остатков фосфорной кислоты. Для фосфора характерна способность к образованию связей с высоким энергетическим потенциалом (макроэргические связи). Такие связи нестабильны, это облегчает их обмен и позволяет использовать энергию на самые различные биохимические и физиологические процессы. Важным соединением, содержащим макроэргические фосфорные связи, является АТФ. Фосфорная кислота, поступая в живые клетки корня, быстро включается в состав нуклеотидов, образуя АМФ и АДФ. Далее в процессе субстратного и окислительного фосфорилирования (анаэробная и аэробная фазы дыхания) образуется АТФ. По данным А.Л. Курсанова, уже через 30 с поступивший меченый фосфор (32Р) обнаруживается в АТФ. Образовавшаяся АТФ используется на активацию Сахаров, аминокислот, синтез нуклеиновых кислот, белков и на другие процессы. Недостаток фосфора влияет практически на все процессы жизнедеятельности растений. Для нормального протекания фотосинтеза, дыхания, роста требуется фосфор. В почве фосфор находится в малорастворимой форме, поэтому в обеспечении питания фосфором велика роль метаболизма корней. Поглощению фосфора способствует выделение корнями кислот, ферментов, углеводистых веществ.
Кальций входит в состав растений в количестве 0,2%. В старых листьях его содержание доходит до 1 %. Поступает в виде иона Са2+. Роль кальция разнообразна. Кальций, соединяясь с пектиновыми веществами, дает пектаты кальция, которые являются важнейшей составной частью клеточных оболочек растений. Срединные пластинки, склеивающие клеточные оболочки соседних клеток, состоят по преимуществу из пектатов кальция. При недостатке кальция клеточные оболочки ослизняются, что особенно ярко проявляется в клетках корня. Кальций плохо передвигается по растению, поэтому для предупреждения ослизнения необходимо, чтобы ионы Са2+непосредственно соприкасались с клетками корня. Сказанное было продемонстрировано в опытах, поставленных по методу изолированных водных культур. В этих опытах одну прядь корней помещали в питательный раствор, содержащий все необходимые питательные вещества; другую прядь корня того же растения — в раствор с исключением кальция.
Очень скоро клетки корня, которые находились в растворе без кальция, начали ослизняться и загнивать. Кальций повышает вязкость цитоплазмы, что видно на опытах с формами плазмолиза. В солях кальция плазмолиз имеет вогнутую форму, так как более вязкая цитоплазма с трудом отстает от клеточных оболочек. Присутствие кальция важно для нормального функционирования мембран. Дефицит кальция приводит к увеличению проницаемости мембран, нарушению их целостности, а соответственно процессов мембранного транспорта. Кальций принимает участие в поддержании структуры хромосом, являясь связующим звеном между ДНК и белком. При недостатке кальция наблюдаются повреждения хромосом и нарушение митотического цикла. Кальций необходим также для поддержания структуры митохондрий и рибосом, образования ламелл во вновь образующихся клетках. Кальций является активатором таких ферментов, как фосфорилаза, аденозинтрифосфатаза, дегидрогеназы, амилазы и др. Са2+ служит посредником для реакций растений на внешние и гормональные сигналы, входя в состав сигнальных систем. В этой связи большое значение имеет связывание Са2+ с белком кальмодулином, находящимся в цитозоле. В цитоплазме в обычных условиях поддерживается низкая концентрация кальция. При повышении внутриклеточной концентрации кальция в ответ на сигналы (внутренние и внешние) происходит его связывание с кальмодулином. Кальмодулин регулирует концентрацию Са2+ в клетке по принципу обратной связи. Комплекс Са2+ — кальмодулин способен влиять на активность ферментов, участвующих в синтезе и распаде циклических нуклеотидов (аденилатциклаза, фосфодиэстеразы), Са2+-зависимых протеинкиназ, Са2+-АТФазы. Кальмодулин влияет на активность структурных белков цитоскелета и таким образом контролирует перемещение органелл внутри клетки, изменение формы клетки, образование веретена деления. Кальций участвует в образовании клеточной стенки и росте растяжением. Кальций реагирует с различными органическими кислотами, давая соли, и тем самым является в определенной мере регулятором значения рН клеточного сока. Нейтрализуя щавелевую кислоту, образует характерные кристаллы щавелевокислого кальция.