Для изучения динамики качественных показателей (цена, себестоимость, производительность труда, средняя заработная плата и т. д.) определяют изменение средней величины индексируемого показателя, которое обусловлено взаимодействием двух факторов:
· изменение значения индексируемого показателя у отдельных групп единиц;
· изменение структуры явления.
Для определения влияния каждого из этих факторов на общую динамику средней применяются индексы переменного, постоянного (фиксированного) состава и индекс структурных сдвигов.
Индексом переменного состава является индекс, отражающий соотношение средних уровней изучаемого явления, относящихся к разным периодам.
Рассмотрим индекс цен переменного состава:
.
Отражает соотношение средней цены товаров в текущем и базисном периодах.
Поскольку средняя цена товаров определяется по формуле средней арифметической взвешенной как отношение товарооборота к объему продаж (,), то индекс цен переменного состава может быть записан следующим образом:
.
Если от объемов товара в натуральном выражении перейти к их удельным весам, то данный индекс может быть записан так:
где – доля каждого товара соответственно в базисном и отчетном периодах.
Индекс постоянного (фиксированного) состава – характеризует динамику средней величины при одной и той же фиксированной структуре. Индекс постоянного состава показывает, как в отчетном периоде по сравнению с базисным изменилось среднее значение показателя по какой-либо однородной совокупности за счет изменения только самой индексируемой величины, т. е. когда влияние структурного фактора устранено.
Индекс цен фиксированного состава:
или – индекс цен фиксированного состава.
Индексом структурных сдвигов называется индекс, характеризующий влияние изменения структуры изучаемого явления на динамику среднего уровня изучаемого явления.
Индекс цен структурных сдвигов:
или – индекс цен структурных сдвигов.
Взаимосвязь: .
Помимо мультипликативной модели, на основе индексов переменного, постоянного состава и структурных сдвигов может быть построено аддитивное разложение, отражающее абсолютное изменение среднего уровня качественного показателя за счет отдельных факторов.
Так, например, общий абсолютный прирост (уменьшение) средней цены товаров в целом по совокупности находится как разность числителя и знаменателя индекса цен переменного состава:
или .
Абсолютный прирост (уменьшение) средней цены за счет изменения цен по отдельным единицам совокупности (например, по отдельным рынкам) определяется как разность числителя и знаменателя индекса цен фиксированного состава:
или .
Абсолютный прирост (уменьшение) средней цены за счет структурных изменений рассчитывается как разность числителя и знаменателя индекса цен структурных сдвигов:
или .
Общий прирост результативного показателя должен быть равен сумме приростов за счет каждого из факторов. Аддитивное разложение имеет вид: