Колебания пружинного маятника. |
|
В вертикальном положении на груз на пружине действуют сила тяжести и сила упругости пружины. Под действием силы тяжести пружина растягивается нах1, а затем мы отклоняем его от этого положения на х. |
|
Тогда согласно второму закону Ньютона, учитывая знаки проекций, получим: тогда: Или |
|
Выразим ускорение: |
|
Сравним полученное уравнение с уравнением колебательного движения Видно, что |
|
Период колебаний |
Формула Гюйгенса: |
Аналогичные вычисления можно проделать с помощью закона сохранения энергии. Учтем, что потенциальная энергия упруго деформированного тела равна |
|
Запишем закон сохранения энергии и возьмем производную от левой и правой частей уравнения: Т.к. производная от постоянной величины равна нулю, то Производная суммы равна сумме производных: Следовательно: |
|
В данном случае этот способ более трудоемкий, но он более общий. |
|
Пружинный маятник — это колебательная система, состоящая из материальной точки массой т и пружины. Рассмотрим горизонтальный пружинный маятник (рис. 13.12, а). Он представляет собой массивное тело, просверленное посередине и надетое на горизонтальный стержень, вдоль которого оно может скользить без трения (идеальная колебательная система). Стержень закреплен между двумя вертикальными опорами. К телу одним концом прикреплена невесомая пружина. Другой ее конец закреплен на опоре, которая в простейшем случае находится в покое относительно инерциальной системы отсчета, в которой происходят колебания маятника. В начале пружина не деформирована, и тело находится в положении равновесия С. Если, растянув или сжав пружину, вывести тело из положения равновесия, то со стороны деформированной пружины на него начнет действовать сила упругости, всегда направленная к положению равновесия. Пусть мы сжали пружину, переместив тело в положение А, и отпустили (υ0=0). Под действием силы упругости оно станет двигаться ускоренно. При этом в положении А на тело действует максимальная сила упругости, так как здесь абсолютное удлинение xm пружины наибольшее. Следовательно, в этом положении ускорение максимальное. При движении тела к положению равновесия абсолютное удлинение пружины уменьшается, а следовательно, уменьшается ускорение, сообщаемое силой упругости. Но так как ускорение при данном движении сонаправлено со скоростью, то скорость маятника увеличивается и в положении равновесия она будет максимальна. Достигнув положения равновесия С, тело не остановится (хотя в этом положении пружина не деформирована, и сила упругости равна нулю), а обладая скоростью, будет по инерции двигаться дальше, растягивая пружину. Возникающая при этом сила упругости направлена теперь против движения тела и тормозит его. В точке D скорость тела окажется равной нулю, а ускорение максимально, тело на мгновение остановится, после чего под действием силы упругости начнет двигаться в обратную сторону, к положению равновесия. Вновь пройдя его по инерции, тело, сжимая пружину и замедляя движение, дойдет до точки А (так как трение отсутствует), т.е. совершит полное колебание. После этого движение тела будет повторяться в описанной последовательности. Итак, причинами свободных колебаний пружинного маятника являются действие силы упругости, возникающей при деформации пружины, и инертность тела.
По закону Гука Fx=−kx. По второму закону Ньютона Fx=max. Следовательно, max=−kx. Отсюда
ax=−kmx или ax+−kmx=0 — динамическое уравнение движения пружинного маятника.
Видим, что ускорение прямопропорционально смешению и противоположно ему направлено. Сравнивая полученное уравнение с уравнением гармонических колебаний ax+ω2x=0, видим, что пружинный маятник совершает гармонические колебания с циклической частотой ω=km−−√ Так как T=2πω, то
T=2πmk−−√— период колебаний пружинного маятника.
По этой же формуле можно рассчитывать и период колебаний вертикального пружинного маятника (рис. 13.12. б). Действительно, в положении равновесия благодаря действию силы тяжести пружина уже растянута на некоторую величину x0, определяемую соотношением mg=kx0. При смещении маятника из положения равновесия O на х проекция силы упругости F′ynpx=−k(x0+x) и по второму закону Ньютона max=−k(x0+x)+mg. Подставляя сюда значение kx0=mg, получим уравнение движения маятника ax+kmx=0, совпадающее с уравнением движения горизонтального маятника.