пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Комп. Алгебра:
» 1.Делимость в кольце целых чисел. Свойства операции деление. Доказательство беск..
» 2. НОД целых чисел. Доказательство представимости НОД в форме безу
» 19. Операции над целыми числами
» 17.Задание функций
» 18. команды plot и display
» 20. оператор if. его синтаксис ...
» 21-22. Цикл for and while
» 20-22. if, for, while
» 23. Процедура
» 24. формальные параметры
» 27. выражение и их типы
» 28. операнды и выделение подоперандов
» 25.Локальные переменные и глобальные
» 29. Типы данных. Команды определение и проверки типа данных
» 30. Внутреннее представление выражений
» 31. Многочлены от одной переменной...
2 семестр алгебра:
» 2.Кривые эллиптического типа. Окружность, эллипс: определение, канон. уравне....
» 1. Общее уравнение линии 2 порядка.....
» Линии второго порядка. Эллипс и его каноническое уравнение. Окружность
I семестр:
» 37. Признаки сходимости несобственных интегралов от неотрицательных функций
» 38. абсолютная и условная сходимость несобственных интегралов
» 35. Несобственные интегралы на бесконечном промежутки
» 36. Несобственные интегралы на конечном промежутки
» 11. Метод интегрирование рациональных дробей
» 10. Метод интегрирование по частям
» 12. Интегрирование выражений вида R(Sin(x)),Cos(x)
» 4.Формулы Маклорена для основных элементарных функций
» 1. Эквивалентность функций
» 2. Формула Тейлора, Маклорена. Остаточный член формулы Тейлора в форме Пеано
» 3. Остаточный член формулы Тейлора в общей форме
» 5. Первый дифференциал функции. Инвариантность формы первого дифференциала
» 6. Дифференциал n-го порядка. Неинвариантность формы второго дифференциала
» 7. Первообразная и неопределенный интеграл. Таблица основных интегралов
» 8. Свойство неопределенного интеграла
» 9. Замена переменной в неопределенном интеграле
» 13. Интегрирование дробно-линейных иррациональностей
» 14. Интегрирование квадратичных иррациональностей посредством подстановок Эйлера
» 15. Интегрирование биноминального дифферинциала
» 16. Определенный интеграл по Риману, необходимые условия его существования
» 17-18.Суммы Дарбу,их свойство связанные с выборкой (18 - с разбиением)
» 19. Критерий интегрируемости интеграла по Риману
» 20. Интегрируемость непрерывной функции
» 21. Интегрируемость монотонной ограниченной функции
» 22-24. Свойство определенного интеграла, связанные с ......
» 25. Оценки интегралов. Теорема о среднем
» 26.Определенный интеграл с переменным верхним пределом. Формула Ньютона - лейбн.
» 27. Замена переменной и интегрирование по частям в определенном интеграле
» 28.Квадрируемость площадей плоских фигур. Вычисление площадей плоских фигур с..
» 29. Параметрическое представление кривых
» 30. Вычисление длины дуги плоской кривой, заданной параметрически
» 31. Вычисление длины дуги плоской кривой, заданной полярным уравнением
» 32. Площадь криволинейного сектора
» 33-34. Кубируемость обьемов тел вращение. Вычисление обьемов тел вращения

Способы задания функций. Замена переменных

2.1 Способы задания функций. Замена переменных

В Maple имеется несколько способов представления функции.

 

Способ 1. Определение функции с помощью оператора присваивания (:=): какому-то выражению присваивается имя, например:

> f:=sin(x)+cos(x);

Image117.gif

Если задать конкретное значение переменной х, то получится значение функции для этого х. Например, если продолжить предыдущий пример и вычислить значение f при Image118.gif, то следует записать:

> x:=Pi/4;

Image119.gif

> f;

Image120.gif

После выполнения этих команд переменная х имеет заданное значение Image121.gif.

Чтобы насовсем не присваивать переменной конкретного значения, удобнее использовать команду подстановки subs({x1=a1, x2=a2,…, },f), где в фигурных скобках указываются переменные хi и их новые значения аi (i=1,2,…), которые следует подставить в функцию f . Например:

> f:=x*exp(-t);

Image122.gif

> subs({x=2,t=1},f);

Image123.gif

Все вычисления в Maple по умолчанию производятся символьно, то есть результат будет содержать в явном виде иррациональные константы, такие как, Image124.gif и другие. Чтобы получить приближенное значение в виде числа с плавающей запятой, следует использовать команду evalf(expr,t), где expr – выражение, t – точность, выраженная в числах после запятой. Например, в продолжение предыдущего примера, вычислим полученное значение функции приближенно:

> evalf(%);

.7357588824

Здесь использован символ (%) для вызова предыдущей команды.

 

Способ 2. Определение функции с помощью функционального оператора, который ставит в соответствие набору переменных(x1,x2,…) одно или несколько выражений (f1,f2,…). Например, определение функции двух переменных с помощью функционального оператора выглядит следующим образом:

> f:=(x,y)->sin(x+y);

Image125.gif

Обращение к этой функции осуществляется наиболее привычным в математике способом, когда в скобках вместо аргументов функции указываются конкретные значения переменных. В продолжение предыдущего примера вычисляется значение функции:

> f(Pi/2,0);

1

 

Способ 3. С помощью команды unapply(expr,x1,x2,…), где expr – выражение, x1,x2,… – набор переменных, от которых оно зависит, можно преобразовать выражение expr в функциональный оператор. Например:

> f:=unapply(x^2+y^2,x,y);

Image126.gif

> f(-7,5);

74

В Maple имеется возможность определения неэлементарных функций вида

Image127.gif

посредством команды

> piecewise(cond_1,f1, cond_2, f2, …).

Например, функция

Image128.gif

записывается следующим образом:

> f:=piecewise(x<0, 0, 0<=x and x<1, x, x>=1, sin(x));

Image129.gif

Задание 1.

Не забудьте, что выполнение всех последующих заданий должно начинаться с текстовой строки, содержащей “Задание №”, где № – номер задания. Также помните, что для правильности вычислений перед выполнением каждого пункта задания следует выполнять команду restart. Перед выполнением контрольных заданий следует набирать в текстовом режиме “Контрольные задания”. Эти правила оформления относятся ко всем лабораторным работам.

 

 

 

 

> f:=sqrt(1-x^2-y^2);

Image133.gif

> f:=subs({x=rho*cos(phi),y=rho*sin(phi)},f);

Image134.gif

> f:=simplify(%);

Image135.gif

 

  1. Запустите Maple. Переведите первую строку в текстовую и наберите в ней: “Лабораторная работа №2”. Нажмите Enter. Строкой ниже наберите: “Выполнил студент ...” и свою фамилию, а на следующей строке наберите: “Задание №1”.
  2. Определите функцию Image130.gif и перейдите в ней к полярным координатам Image131.gifImage132.gif. Упростите полученное выражение. Для этого наберите:
  3. Определите функцию Image136.gif

и прибавьте к ней х. Для этого наберите:

 

> f:=piecewise(x<-1, x, -1<=x and x<1, -x^2, x>=1, -x);

Image137.gif

> %+x: simplify(%);

Image138.gif


27.06.2016; 16:42
хиты: 66
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2025. All Rights Reserved. помощь