пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Комп. Алгебра:
» 1.Делимость в кольце целых чисел. Свойства операции деление. Доказательство беск..
» 2. НОД целых чисел. Доказательство представимости НОД в форме безу
» 19. Операции над целыми числами
» 17.Задание функций
» 18. команды plot и display
» 20. оператор if. его синтаксис ...
» 21-22. Цикл for and while
» 20-22. if, for, while
» 23. Процедура
» 24. формальные параметры
» 27. выражение и их типы
» 28. операнды и выделение подоперандов
» 25.Локальные переменные и глобальные
» 29. Типы данных. Команды определение и проверки типа данных
» 30. Внутреннее представление выражений
» 31. Многочлены от одной переменной...
2 семестр алгебра:
» 2.Кривые эллиптического типа. Окружность, эллипс: определение, канон. уравне....
» 1. Общее уравнение линии 2 порядка.....
» Линии второго порядка. Эллипс и его каноническое уравнение. Окружность
I семестр:
» 37. Признаки сходимости несобственных интегралов от неотрицательных функций
» 38. абсолютная и условная сходимость несобственных интегралов
» 35. Несобственные интегралы на бесконечном промежутки
» 36. Несобственные интегралы на конечном промежутки
» 11. Метод интегрирование рациональных дробей
» 10. Метод интегрирование по частям
» 12. Интегрирование выражений вида R(Sin(x)),Cos(x)
» 4.Формулы Маклорена для основных элементарных функций
» 1. Эквивалентность функций
» 2. Формула Тейлора, Маклорена. Остаточный член формулы Тейлора в форме Пеано
» 3. Остаточный член формулы Тейлора в общей форме
» 5. Первый дифференциал функции. Инвариантность формы первого дифференциала
» 6. Дифференциал n-го порядка. Неинвариантность формы второго дифференциала
» 7. Первообразная и неопределенный интеграл. Таблица основных интегралов
» 8. Свойство неопределенного интеграла
» 9. Замена переменной в неопределенном интеграле
» 13. Интегрирование дробно-линейных иррациональностей
» 14. Интегрирование квадратичных иррациональностей посредством подстановок Эйлера
» 15. Интегрирование биноминального дифферинциала
» 16. Определенный интеграл по Риману, необходимые условия его существования
» 17-18.Суммы Дарбу,их свойство связанные с выборкой (18 - с разбиением)
» 19. Критерий интегрируемости интеграла по Риману
» 20. Интегрируемость непрерывной функции
» 21. Интегрируемость монотонной ограниченной функции
» 22-24. Свойство определенного интеграла, связанные с ......
» 25. Оценки интегралов. Теорема о среднем
» 26.Определенный интеграл с переменным верхним пределом. Формула Ньютона - лейбн.
» 27. Замена переменной и интегрирование по частям в определенном интеграле
» 28.Квадрируемость площадей плоских фигур. Вычисление площадей плоских фигур с..
» 29. Параметрическое представление кривых
» 30. Вычисление длины дуги плоской кривой, заданной параметрически
» 31. Вычисление длины дуги плоской кривой, заданной полярным уравнением
» 32. Площадь криволинейного сектора
» 33-34. Кубируемость обьемов тел вращение. Вычисление обьемов тел вращения

Эллипс

 

Определение. Эллипс - это геометрическая фигура, которая ограничена кривой, заданной уравнением Eqn001.gif.

Он имеет два фокуса. Фокусами называются такие две точки, сумма расстояний от которых до любой точки эллипса есть постоянная величина.

 

Чертеж фигуры эллипс

эллипс

F1 , F2 – фокусы . F1 = ( c ; 0); F 2 (- c ; 0)

с – половина расстояния между фокусами;

a – большая полуось;

b – малая полуось.

 

Теорема. Фокусное расстояние и полуоси связаны соотношением:

a2 = b 2 + c 2.

 

Доказательство: В случае, если точка М находится на пересечении эллипса с вертикальной осью, r1 + r2 = 2*Eqn006.gif(по теореме Пифагора). В случае, если точка М находится на пересечении его с горизонтальной осью, r1 + r 2 = a – c + a + c. Т.к. по определению сумма r1+ r 2 – постоянная величина, то , приравнивая, получаем:

 

a 2 = b 2 + c 2

 

r1 + r2 = 2 a .

 

Эксцентриситет фигуры эллипс

 

Определение. Форма эллипса определяется характеристикой, которая является отношением фокусного расстояния к большей оси и называется эксцентриситетом .

е = с/ a .

Т.к. с < a , то е < 1.

 

Определение. Величина k = b / a называется коэффициентом сжатия , а величина 1 – k = ( a – b )/ a называется сжатием.

Коэффициент сжатия и эксцентриситет связаны соотношением: k2 = 1 – e 2 .

Если a = b ( c = 0, e = 0, фокусы сливаются), то эллипс превращается в окружность.

Если для точки М(х 1 , у 1 ) выполняется условие: Eqn007.gif, то она находится внутри эллипса, а если Eqn008.gif, то точка находится вне его.

Теорема. Для произвольной точки М(х, у), принадлежащей фигуре эллипс верны соотношения :

r 1 = a – ex , r2 = a + ex .

 

Доказательство. Выше было показано, что r1 + r2 = 2 a . Кроме того, из геометрических соображений можно записать:

Eqn009.gif

Eqn010.gif

После возведения в квадрат и приведения подобных слагаемых:

Eqn011.gif

Eqn012.gif

Eqn013.gif

Аналогично доказывается, что r2 = a + ex . Теорема доказана.

 

Директрисы фигуры эллипс

 

С фигурой эллипс связаны две прямые, называемые директрисами . Их уравнения:

x = a / e ; x = - a / e .

Теорема. Для того, чтобы точка лежала на границе фигуры эллипс, необходимо и достаточно, чтобы отношение расстояния до фокуса к расстоянию до соответствующей директрисы равнялось эксцентриситету е.

 

Пример. Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину фигуры эллипс, заданного уравнением : Eqn014.gif

 

•  Координаты нижней вершины: x = 0; y2 = 16; y = -4.

•  Координаты левого фокуса: c2 = a 2 – b2 = 25 – 16 = 9; c = 3; F2 (-3; 0).

•  Уравнение прямой, проходящей через две точки:

Eqn015.gif

 

Пример. Составить уравнение границы фигуры эллипс, если его фокусы F 1 (0; 0), F2 (1; 1), большая ось равна 2.

 

Уравнение границы имеет вид: Eqn016.gif. Расстояние между фокусами:

2 c = Eqn017.gif, таким образом, a2 – b2 = c2 = 1/2

по условию 2а = 2, следовательно а = 1, b = Eqn018.gif

Итого искомое уравнение имеет вид: Eqn019.gif.

 

 


24.06.2016; 01:24
хиты: 115
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2025. All Rights Reserved. помощь