пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

Комп. Алгебра:
» 1.Делимость в кольце целых чисел. Свойства операции деление. Доказательство беск..
» 2. НОД целых чисел. Доказательство представимости НОД в форме безу
» 19. Операции над целыми числами
» 17.Задание функций
» 18. команды plot и display
» 20. оператор if. его синтаксис ...
» 21-22. Цикл for and while
» 20-22. if, for, while
» 23. Процедура
» 24. формальные параметры
» 27. выражение и их типы
» 28. операнды и выделение подоперандов
» 25.Локальные переменные и глобальные
» 29. Типы данных. Команды определение и проверки типа данных
» 30. Внутреннее представление выражений
» 31. Многочлены от одной переменной...
2 семестр алгебра:
» 2.Кривые эллиптического типа. Окружность, эллипс: определение, канон. уравне....
» 1. Общее уравнение линии 2 порядка.....
» Линии второго порядка. Эллипс и его каноническое уравнение. Окружность
I семестр:
» 37. Признаки сходимости несобственных интегралов от неотрицательных функций
» 38. абсолютная и условная сходимость несобственных интегралов
» 35. Несобственные интегралы на бесконечном промежутки
» 36. Несобственные интегралы на конечном промежутки
» 11. Метод интегрирование рациональных дробей
» 10. Метод интегрирование по частям
» 12. Интегрирование выражений вида R(Sin(x)),Cos(x)
» 4.Формулы Маклорена для основных элементарных функций
» 1. Эквивалентность функций
» 2. Формула Тейлора, Маклорена. Остаточный член формулы Тейлора в форме Пеано
» 3. Остаточный член формулы Тейлора в общей форме
» 5. Первый дифференциал функции. Инвариантность формы первого дифференциала
» 6. Дифференциал n-го порядка. Неинвариантность формы второго дифференциала
» 7. Первообразная и неопределенный интеграл. Таблица основных интегралов
» 8. Свойство неопределенного интеграла
» 9. Замена переменной в неопределенном интеграле
» 13. Интегрирование дробно-линейных иррациональностей
» 14. Интегрирование квадратичных иррациональностей посредством подстановок Эйлера
» 15. Интегрирование биноминального дифферинциала
» 16. Определенный интеграл по Риману, необходимые условия его существования
» 17-18.Суммы Дарбу,их свойство связанные с выборкой (18 - с разбиением)
» 19. Критерий интегрируемости интеграла по Риману
» 20. Интегрируемость непрерывной функции
» 21. Интегрируемость монотонной ограниченной функции
» 22-24. Свойство определенного интеграла, связанные с ......
» 25. Оценки интегралов. Теорема о среднем
» 26.Определенный интеграл с переменным верхним пределом. Формула Ньютона - лейбн.
» 27. Замена переменной и интегрирование по частям в определенном интеграле
» 28.Квадрируемость площадей плоских фигур. Вычисление площадей плоских фигур с..
» 29. Параметрическое представление кривых
» 30. Вычисление длины дуги плоской кривой, заданной параметрически
» 31. Вычисление длины дуги плоской кривой, заданной полярным уравнением
» 32. Площадь криволинейного сектора
» 33-34. Кубируемость обьемов тел вращение. Вычисление обьемов тел вращения

Формула - Ньютона-Лейбница

Формула Ньютона-Лейбница - даёт соотношение между операциями взятия определенного интеграла и вычисления первообразной. Формула Ньютона-Лейбница - основная формула интегрального исчисления.

 

Данная формула верна для любой функции f(x), непрерывной на отрезке [а, b]F - первообразная для f(x). Таким образом, для вычисления определенного интеграла нужно найти какую-либо первообразную F функции f(x) , вычислить ее значения в точках a и b и найти разность F(b) – F(a).

 

Для доказательства формулы Ньютона-Лейбница нам потребуется понятие интеграла с переменным верхним пределом.

Если функция y = f(x) непрерывна на отрезке [a; b], то для аргумента формулаинтеграл вида формула является функцией верхнего предела. Обозначим эту функциюформула, причем эта функция непрерывная и справедливо равенство формула.

Действительно, запишем приращение функции формула, соответствующее приращению аргумента формула и воспользуемся пятым свойством определенного интеграла и следствием из десятого свойства:
формула 
где формула.

Перепишем это равенство в виде формула. Если вспомнить определение производной функции и перейти к пределу при формула, то получим формула. То есть, формула - это одна из первообразных функции y = f(x) на отрезке [a; b]. Таким образом, множество всех первообразных F(x) можно записать как формула, где С – произвольная постоянная.

Вычислим F(a), используя первое свойство определенного интеграла: формула, следовательно, формула. Воспользуемся этим результатом при вычислении F(b)формула, то есть формула. Это равенство дает доказываемую формулу Ньютона-Лейбница формула.

Приращение функции принято обозначать как формула. Пользуясь этим обозначением, формула Ньютона-Лейбница примет вид формула.

Для применения формулы Ньютона-Лейбница нам достаточно знать одну из первообразных y=F(x) подынтегральной функции y=f(x) на отрезке [a; b] и вычислить приращение этой первообразной на этом отрезке. В статье методы интегрирования разобраны основные способы нахождения первообразной. Приведем несколько примеров вычисления определенных интегралов по формуле Ньютона-Лейбница для разъяснения.


08.06.2016; 23:16
хиты: 126
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2025. All Rights Reserved. помощь