Временной ряд х t (t=1; n) – ряд значений какого-либо показателя за несколько последовательных промежутков времени.
Каждый временной ряд хt складывается из следующих основных составляющих (компонентов):
- Тенденции, характеризующей общее направление динамики изучаемого явления. Аналитически тенденция выражается некоторой функцией времени, называемой трендом (Т).
- Циклической или периодической составляющей, характеризующей циклические или периодические колебания изучаемого явления. Колебания представляют собой отклонения фактических уровней ряда от тренда. Объем продаж некоторых товаров подвержен сезонным колебаниям. Сезонные колебания (S) – периодические колебания, которые имеют определенный и постоянный период равный годовому промежутку. Конъюнктурные колебания (К) связаны с большими экономическими циклами, период таких колебаний – несколько лет.
- Случайной составляющей, которая является результатом воздействия множества случайных факторов (Е).
Тогда уровень ряда можно представить как функцию от этих составляющих (компонентов):

В зависимости от взаимосвязи между составляющими может быть построена либоаддитивная модель: =T+K+S+E, либо мультипликативная модель:
=T·K·S·E ряда динамики.
Для определения состава компонентов (структуры временного ряда) в модели временного ряда строят автокорреляционную функцию.
Автокорреляция– корреляционная связь между последовательными уровнями одного и того же ряда динамики (сдвинутыми на определенный промежуток времени L - лаг). То есть, автокорреляция - это связь между рядом: x1, x2, ... xn-l и рядом x1+l, x2+l, ...,xn, где L- положительное целое число. Автокорреляция может быть измерена коэффициентом автокорреляции: ,
где ,
– средний уровень ряда (x1+L, x2+L,...,xn ),
средний уровень ряда (x1, x2,..., xn-L ),
st, s t-L – средние квадратические отклонения, для рядов (x1+L, x2+L,..., xn ) и (x1, x2,..., xn-L) соответственно.
Лаг (сдвиг во времени) определяет порядок коэффициента автокорреляции. Если L=1, то имеем коэффициент автокорреляции 1-ого порядка rt,t-1, если L=2, то коэффициент автокорреляции 2-ого порядка rt,t-2 и т.д. Следует учитывать, что с увеличением лага на единицу, число пар значений, по которым рассчитывается коэффициент автокорреляции уменьшается на 1. Поэтому обычно рекомендуют максимальный порядок коэффициента автокорреляции равный n/4.
Рассчитав несколько коэффициентов автокорреляции, можно определить лаг (L), при котором автокорреляция (rt,t-L) наиболее высокая, выявив тем самым структуру временного ряда.
- Если наиболее высоким оказывается значение коэффициента автокорреляции первого порядка rt,t-1, то исследуемый ряд содержит только тенденцию.
- Если наиболее высоким оказался коэффициент автокорреляции rt,t-L порядка L, то ряд содержит колебания периодом L.
- Если ни один из rt,t-L не является значимым, можно сделать одно из двух предположений:
- либо ряд не содержит тенденции и циклических колебаний, а его уровень определяется только случайной компонентой;
- либо ряд содержит сильную нелинейную тенденцию, для выявления которой нужно провести дополнительный анализ.
Последовательность коэффициентов автокорреляции 1, 2 и т.д. порядков называют автокорреляционной функцией временного ряда. График зависимости значений коэффициентов автокорреляции от величины лага (порядка коэффициента автокорреляции) называют коррелограммой.