Дифференциальные уравнения равновесия покоящейся жидкости иначе называютдифференциальными уравнениями Эйлера. Они получены для общего случая относительного покоя жидкости. Возможны следующие варианты относительного покоя.

Рисунок
3.2 Вывод дифференциальных уравнений
Рассмотрим в произвольной системе координат X,Y,Z произвольную точку A. Вблизи этой точки выделим элементарный объём
в форме прямоугольного параллелепипеда, грани которого для простоты математических выражений параллельны координатным плоскостям.
Отметим следующее:
- давление является функцией координат (при этом в любой точке по всем направлениям оно одинаково),
- при переходе к точкам Ax( Ay, Az) меняется только одна координата на бесконечно малую величину dx( dy, dz), поэтому функция получает приращение только по одной координате,
- это приращение равно частному дифференциалу по соответствующей координате

Разность давлений, действующих на противоположные грани параллелепипеда (внутрь рассматриваемого объёма), перпендикулярные соответствующим осям, будет иметь вид:

Исходя из этого, определим разности сил, вызванных давлением, в проекции на оси координат

Кроме сил давления на параллелепипед будут действовать инерционные силы
в общем случае определяемые массой и ускорениями X, Y, Z на соответствующие оси

Учитывая, что параллелепипед находится в покое, сумма сил, действующих на него, равна 0:

Разделив систему уравнений сил на массу рассматриваемого параллелепипеда, получим систему уравнений Эйлера:

На практике, чтобы избавиться от частных производных, используют одно уравнение, заменяющее систему. Для этого первое уравнение умножают на dx, второе на dy, третье на dz и складывают их:

где 
В этой формуле сумма в скобках является полным дифференциалом давления, который в результате оказывается равным

Полученное уравнение показывает, как изменяется давление при изменении координат внутри покоящейся жидкости для общего случая относительного покоя.
