пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

I семестр:
» СПО
» ОС
» МС

28

Вопрос 1 Дискретно-детерминированные модели (F-схемы).

Дискретно-детерминированный подход характерен тем, что в качестве математического аппарата на этапе формализации процесса функционирования систем используется математического аппарата математический аппарат теории автоматов. Теория автоматов — это раздел теоретической кибернетики, в котором изучаются математические модели — автоматы. На основе этой теории система представляется в виде автомата, перерабатывающего дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени.

 

Автомат можно представить как некоторое устройство (черный ящик), на которое подаются входные сигналы и снимаются выходные и которое может иметь некоторые внутренние состояния. Конечным автоматом называется автомат, у которого множество внутренних состояний и входных сигналов (а следовательно, и множество выходных сигналов) являются конечными множествами.

 

Абстрактно конечный автомат (англ. finite automata) можно представить как математическую схему (F-схему), характеризующуюся шестью элементами: конечным множеством X входных сигналов (входным алфавитом); конечным множеством Y выходных сигналов (выходным алфавитом); конечным множеством Z внутренних состояний (внутренним алфавитом или алфавитом состояний); начальным состоянием z0, z0  Z; функцией переходов  (z, х)\ функцией выходов   (z, х).

Автомат, задаваемый F-схемой:  ,— функционирует в дискретные моменты времени, которые называются такты, равные друг другу, каждому из которых соответствуют постоянные значения входного и выходного сигналов и внутренние состояния.

Абстрактный конечный автомат имеет один входной и один выходной каналы. В каждый момент t = 0, 1, 2, ... дискретного времени F-автомат находится в определенном состоянии z(t) из множества Z состояний автомата, причем в начальный момент времени t = 0 он всегда находится в начальном состоянии z(0)=zo. В момент t, будучи в состоянии z(t), автомат способен воспринять на входном канале сигнал x(t)ÎX и выдать на выходном канале сигнал у(t) = y [z(t), x(t)], переходя в состояние z(t +1) = j [z(t), х(t)], z(t)ÎZ, y(t)ÎY. Абстрактный конечный автомат реализует некоторое отображение множества слов входного алфавита X на множество слов выходного алфавита Y. Другими словами, если на вход конечного автомата, установленного в начальное состояние z0, подавать в некоторой последовательности буквы входного алфавита х(0), х(1), х(2), ..., т. е. входное слово, то на выходе автомата будут последовательно появляться буквы выходного алфавита у(0), у(1), у(2), ..., образуя выходное слово.

Таким образом, работа конечного автомата происходит по следующей схеме: в каждом i такте на вход автомата, находящегося в состоянии z(t), подается некоторый сигнал x(t), на который он реагирует переходом в (i + 1)-такте в новое состояние z(t + l) и выдачей некоторого выходного сигнала.

По числу состояний различают конечные автоматы с памятью и без памяти.

Автоматы с памятью имеют более одного состояния, а автоматы без памяти (комбинационные или логические схемы) обладают лишь одним состоянием. При этом, работа комбинационной схемы заключается в том, что она ставит в соответствие каждому входному сигналу x(t) определенный выходной сигнал y(t), т. е. реализует логическую функцию вида

 

Эта функция называется булевой, если алфавиты X и Y, которым принадлежат значения сигналов х и у, состоят из двух букв.

По характеру отсчета дискретного времени конечные автоматы делятся насинхронные и асинхронные.

В синхронных F-автоматах моменты времени, в которые автомат «считывает» входные сигналы, определяются принудительно синхронизирующими сигналами. После очередного синхронизирующего сигнала с учетом «считанного» происходит переход в новое состояние и выдача сигнала на выходе, после чего автомат может воспринимать следующее значение входного сигнала. Таким образом, реакция автомата на каждое значение входного сигнала заканчивается за один такт, длительность которого определяется интервалом между соседними синхронизирующими сигналами.

Асинхронный F-автомат считывает входной сигнал непрерывно, и поэтому, реагируя на достаточно длинный входной сигнал постоянной величины х, он может несколько раз изменять состояние, выдавая соответствующее число выходных сигналов, пока не перейдет в устойчивое, которое уже не может быть изменено данным входным сигналом.

Чтобы задать конечный F-автомат, необходимо описать все элементы множества , т. е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов, причем среди множества состояний необходимо выделить состояние z0, в котором автомат находился в момент времени t=0.

Существует несколько способов задания работы F-автоматов, но наиболее часто используются табличный, графический и матричный.

Простейший табличный способ задания конечного автомата основан на использовании таблиц переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы — его состояниям. При этом обычно первый слева столбец соответствует начальному состоянию z0. На пересечении i-й строки и k-го столбца таблицы переходов помещается соответствующее значение j(zk, хi,) функции переходов, а в таблице выходов — соответствующее значение y(zk, хi,) функции выходов.

Для некоторых F-автоматов называемых автоматами Мура, характеризующихся тем, что функция выходов не зависит от входной переменной x(t), обе таблицы можно совместить, получив так называемую отмеченную таблицу переходов, в которой над каждым состоянием zk автомата, обозначающим столбец таблицы, стоит соответствующий этому состоянию, согласно, выходной сигнал y(zi).

При другом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершины дуг графа, соответствующих тем или иным переходам автомата.

Если входной сигнал хk вызывает переход из состояния zi, в состояние zj,-, то на графе автомата дуга, соединяющая вершину zi с вершиной zj, обозначается хk. Для того чтобы задать функцию выходов, дуги графа необходимо отметить соответствующими выходными сигналами.

Для конечного автомата (автомата Мили) эта разметка производится так: если входной сигнал хk действует на состояние zi, то, согласно сказанному, получается дуга, исходящая из zi и помеченная хk; эту дугу дополнительно отмечают выходным сигналом  рис. 4.

рис. 4.

Для автомата Мура аналогичная разметка графа такова: если входной сигналхk, действуя на некоторое состояние автомата, вызывает переход в состояние zjто дугу, направленную в zj и помеченную хk, дополнительно отмечают выходным сигналом  рис. 5.

рис. 5.

При решении задач моделирования систем часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица С=||сij||, строки которой соответствуют исходным состояниям, а столбцы — состояниям перехода. Элемент cij=xk/ys, стоящий на пересечении i-й строки и j-го столбца, в случае автомата Мили соответствует входному сигналу хk, вызывающему переход из состояния zi в состояние zj, и выходному сигналу ys, выдаваемому при этом переходе. Для автомата Мили, матрица соединений имеет вид

Для F-автомата Мура элемент сij равен множеству входных сигналов на переходе (zi, zj), а выход описывается вектором выходов i-я компонента которого — выходной сигнал, отмечающий состояние zi.

Необходимо отметить, что вообще на практике автоматы всегда являются асинхронными, а устойчивость их состояний обеспечивается тем или иным способом, например введением сигналов синхронизации. Однако на уровне абстрактной теории, когда конечный автомат выступает в виде математической схемы для формализации конкретных объектов без учета ряда второстепенных особенностей, часто удобно оказывается оперировать с синхронными конечными автоматами.

Таким образом, понятие F-автомата в дискретно-детерминированном подходе к исследованию на моделях свойств объектов является математической абстракцией, удобной для описания широкого класса процессов функционирования реальных объектов в автоматизированных системах обработки информации и управления. В качестве таких объектов в первую очередь следует назвать элементы и узлы ЭВМ, устройства контроля, регулирования и управления, системы временной и пространственной коммутации в технике обмена информацией и т. д. Для всех перечисленных объектов характерно наличие дискретных состояний и дискретный характер работы во времени, т. е. их описание с помощью F-схем является эффективным.


02.07.2015; 22:40
хиты: 96
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2025. All Rights Reserved. помощь