пользователей: 30398
предметов: 12406
вопросов: 234839
Конспект-online
РЕГИСТРАЦИЯ ЭКСКУРСИЯ

I семестр:
» СПО
» ОС
» МС

11

Математические схемы. Формальная модель объекта. 

Понятие математическая схема позволяет рассматривать математику не как метод расчёта, а как метод мышления, средства формулирования понятий, что является наиболее важным при переходе от словесного описания к формализованному представлению процесса её функционирования в виде некоторой модели.

При пользовании мат. схемой в первую очередь исследователя системы должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования.

Например, представление процесса функционирования ИВС коллективного пользования в виде сети схем массового обслуживания даёт возможность хорошо описать процессы, происходящие в системе, но при сложных законах входящих потоков и потоков обслуживания не даёт возможности получения результатов в явном виде.

Математическую схему можно определить как звено при переходе от содержательного к формализованному описанию процесса функционирования системы с учётом воздействия внешней среды. Т.е. имеет место цепочка: описательная модель — математическая схема — имитационная модель.

Каждая конкретная система S характеризуется набором свойств, т.е. величинами, отражающими поведение моделируемого объекта (реальной системы), при этом учитываются условия её функционирования во взаимодействии с внешней средой (системой) Е.

При построении модели системы S необходимо решить вопрос о её полноте. Полнота моделирования регулируется, в основном, выбором границ "Система S — среда Е". Также должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепенные в плане цели моделирования.


 

Модель объекта моделирования, т.е. системы S можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества:

 

- совокупность Х - входных воздействий на S хiÎХ, i=1…nx;

- совокупность воздействий внешней среды vlÎV, l=1…nv;

- совокупность внутренних (собственных) параметров системы hkÎH, k=1…nh;

- совокупность выходных характеристик системы yjÎY, j=1…ny.

Подходы

  •  непрерывно-детерминированный (D-схемы);
  •  дискретно-детерминированный (F-схемы);
  •  дискретно-стохастический (Р-схемы);
  •  непрерывно-стохастический (Q-схемы);
  •  сетевой (N-схемы);
  •  обобщенный или универсальный (а-схемы).

Обработка результатов машинного эксперимента при синтезе систем. 

При синтезе системы S на базе машинной модели Мм задача поиска оптимального варианта системы при выбранном критерии оценки эффективности и заданных ограничениях решается путем анализа характеристик процесса функционирования различных вариантов системы, их сравнительной оценки и выбора наилучшего варианта. Независимо от того, как организуется выбор наилучшего варианта системы — простым перебором всех проанализированных при машинных экспериментах результатов или с помощью специальных процедур поиска оптимального варианта, например методов математического программирования,— элементарной операцией является сравнение статистически усредненных критериев оценки эффективности вариантов систем.

Особенности машинного синтеза. Учитывая то обстоятельство, что конкурирующие варианты системы S отличаются друг от друга структурой, алгоритмами поведения, параметрами, число таких вариантов достаточно велико. Поэтому при синтезе оптимального варианта системы Sopt особенно важно минимизировать затраты ресурсов на получение в результате моделирования характеристик каждого варианта системы. Исходя из этих особенностей, при синтезе системы S обработку и анализ результатов моделирования каждого варианта системы S следует рассматривать не автономно, а в их тесной взаимосвязи. Очевидно, что задача синтеза оптимального варианта моделируемой системы Sopt должна быть уже поставлена при планировании машинного эксперимента с моделью Мм.

 


02.07.2015; 13:13
хиты: 93
рейтинг:0
для добавления комментариев необходимо авторизироваться.
  Copyright © 2013-2025. All Rights Reserved. помощь