- Предел промежуточной функции
Если в некоторой окрестности точки х0 выполняется неравенство g (x) < f (x) < p (x) ито
Доказательство. Так как
то (
ε > 0 ) (
δ1 = δ1 (ε) > 0 ) (
0 < | x - x0 | < δ1 ) : | g (x) – A | < ε Так как
, то (
ε > 0 ) (
δ2 = δ2 (ε) > 0 ) (
0 < | x - x0 | < δ2 ) : | p (x) – A | < ε Пусть δ = min(δ1,δ2} то " 0 < |x - x0| < δ имеем A – ε < g ( x ) < f ( x ) < p ( x ) < A + ε то есть (
ε > 0 ) (
δ = δ (ε) > 0 ) (
0 < | x - x0 | < δ ) : | f (x) – A | < ε. Это означает, что